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Introdu

ión, desarrollos previos y

des
rip
ión de objetivos

Capítulo1

1.1 Introdu

ión

Desde la dé
ada de los años 50 del pasado siglo y debido prin
ipalmente a la 
onstru

ión de

estru
turas altamente sensibles 
omo son los rea
tores nu
leares en lugares de riesgo, la obten-


ión de la respuesta sísmi
a de una estru
tura enterrada ha sido un problema de gran interés

para los ingenieros 
iviles. Las eventuales 
onse
uen
ias que el fallo estru
tural de este tipo de

dispositivos pudiera provo
ar justi�
an el esfuerzo y la aten
ión que la 
omunidad 
ientí�
a

y té
ni
a ha dedi
ado a este problema. Debe de
irse que si bien es mu
ho el 
ono
imiento

adquirido de 
uáles son los fa
tores prin
ipales que deben ser tenidos en 
uenta a la hora de

abordar la 
onstru

ión de este tipo de estru
turas, son mu
hos aun los interrogantes que sur-

gen al diseñador y 
al
ulista y, por tanto, se ha
e ne
esario avanzar en el 
ono
imiento de los

fenómenos involu
rados y en el desarrollo de modelos pre
isos y e�
ientes que permitan arrojar

nueva luz sobre la importan
ia relativa de los diferentes aspe
tos a tener en 
uenta y que a la

vez propor
ionen al té
ni
o elementos de de
isión y herramientas de análisis.

En 
uanto al papel que juega el terreno en el que se aloja la estru
tura enterrada, pronto se

puso de mani�esto la importan
ia que tienen los efe
tos de intera

ión suelo�estru
tura en la

respuesta estru
tural. Para empezar, la rigidez del 
onjunto estru
tura�suelo está fuertemente


ondi
ionada por la propia rigidez del material que 
on�gura el terreno, y por tanto, la hipótesis

de base in�nitamente rígida puede resultar 
iertamente 
omprometida 
uando la rigidez real

del suelo no supere a la de la super�estru
tura en varios órdenes de magnitud. En el 
aso de

una soli
ita
ión dinámi
a el efe
to es, si 
abe, aun más 
laro. La 
onsidera
ión del suelo 
omo

parte del sistema bajo estudio impli
a la 
onsidera
ión de los efe
tos dinámi
os aso
iados a la

masa que aporta. Así pues, frente a la hipótesis de base rígida, la 
onsidera
ión de suelo �exible

disminuye la rigidez global y aumenta la masa del sistema. En 
onse
uen
ia, 
omo pronto se


omprendió, la 
onsidera
ión de los efe
tos de intera

ión suelo�estru
tura 
onlleva que las

fre
uen
ias naturales del sistema y las amplitudes de la respuesta dinámi
a son inferiores a

las 
orrespondientes a la hipótesis de base rígida. En ello in�uye también la 
onsidera
ión del

amortiguamiento aso
iado al medio suelo, tanto el amortiguamiento interno del material 
omo

el amortiguamiento geométri
o rela
ionado 
on la dispersión de la energía en un medio, 
omo

1
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es el suelo, no a
otado.

En el 
aso de una soli
ita
ión dinámi
a que proviene del terreno, 
omo es el 
aso de la soli
ita
ión

sísmi
a, existen algunos elementos adi
ionales a tener en 
uenta y que se ponen de mani�esto

en el momento en que se relaja la hipótesis de base rígida. Son parti
ularmente importantes

los relativos a la naturaleza espa
ial de la soli
ita
ión, al estar ésta produ
ida por trenes de

ondas sísmi
as. Así pues, en el 
aso de estru
turas que están en 
onta
to 
on el terreno a lo

largo de un ámbito geométri
o que sea del mismo orden de magnitud que la longitud de las

ondas sísmi
as, los puntos de 
onta
to estru
tura�suelo estarán sometidos, en 
ada instante de

tiempo, a desplazamientos diferen
iales, in
luso en desfase, unos de otros. Aun más, la presen
ia

de la estru
tura puede modi�
ar la 
inemáti
a de los puntos en que se aloja la 
imenta
ión, en


ompara
ión 
on la que tendría lugar en situa
ión de 
ampo libre. Como 
onse
uen
ia de todo

ello, el 
ál
ulo sísmi
o del 
onjunto suelo�estru
tura requiere no solo la determina
ión pre
isa

de la rigidez y propiedades dinámi
as de 
ada medio, sino también la forma en que ambos

se afe
tan mutuamente por tener vin
ulados los movimientos de los puntos de 
onta
to. Se


on
luye que el 
ál
ulo dinámi
o de la estru
tura debe tener en 
uenta todos estos efe
tos de

intera

ión mutua.

En el 
aso de tipologías estru
turales 
omo puedan ser las 
orrespondientes a silos nu
leares,

rea
tores nu
leares, pozos de 
imenta
ión, et
., al tratarse de estru
turas masivas, y siguiendo

la línea de los primeros trabajos publi
ados sobre este problema, la hipótesis de 
ál
ulo habitual

era 
onsiderar la estru
tura 
omo un sólido rígido enterrado en un suelo 
onsiderado 
omo un

sólido deformable. Esta hipótesis permitía el empleo de té
ni
as simpli�
adas para la obten
ión

de la respuesta (desplazamientos de puntos de la estru
tura, tensiones en la interfase estru
tura�

suelo, et
.) y se justi�
aba por las herramientas de análisis que existían en aquellos años y sólo

en determinados 
asos. Debe apuntarse que aun en la a
tualidad sigue siendo una hipótesis

habitual del 
ál
ulo si la rela
ión entre la profundidad del embebimiento y el an
ho está del

orden de 3. Por el 
ontrario, un planteamiento riguroso ha
iendo uso de un modelo dire
to que

in
luya 
omo objeto del análisis tanto de la estru
tura 
omo el suelo de 
imenta
ión permite

tener en 
uenta la estru
tura 
on su rigidez real. Paradóji
amente, son muy po
os los trabajos

en la literatura que estudian la importan
ia de la rigidez de la estru
tura en su respuesta sísmi
a.

Para estru
turas tales 
omo pozos, depósitos o esta
iones de bombeo semienterradas, y hasta

donde 
ono
e el autor de este trabajo, apenas existen referen
ias que observan el problema,


on las 
ara
terísti
as geométri
as parti
ulares, en los términos globales planteados.

En este sentido, en el grupo de investiga
ión en el que se ha llevado a 
abo esta tesis do
toral, se

han desarrollado en los últimos años modelos numéri
os basados en el Método de los elementos

de Contorno (MEC) y en el Método de los Elementos Finitos (MEF) que permiten el análisis

dire
to del problema teniendo en 
uenta los efe
tos de intera

ión entre regiones distintas

(suelo, estru
tura) y los a
oplamientos mutuos. Es en esta línea en la que se desarrollan los

objetivos de esta tesis. Por tanto, 
on el objeto de poner en 
ontexto el trabajo que se ha

llevado a 
abo, resulta ade
uado exponer de forma breve los modelos desarrollados por el grupo

de investiga
ión hasta el momento en que se aborda este trabajo de investiga
ión, y que han

sido el punto de partida del mismo. Esta breve exposi
ión, a la que está dedi
ada el próximo

apartado, permite además un a
er
amiento al estado del arte en 
ada una de las líneas de

trabajo que se van a exponer.
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1.2 Ante
edentes: modelos desarrollados en el grupo de in-

vestiga
ión

Esta tesis do
toral es 
ontinua
ión de una línea de trabajo en el 
ampo de la modeliza
ión

numéri
a apli
ada a problemas de dinámi
a estru
tural y propaga
ión de ondas que se lleva a


abo en la División de Me
áni
a de Medios Continuos y Estru
turas del Instituto Universitario

SIANI de la Universidad de Las Palmas de Gran Canaria (ULPGC) en la que se ha integrado

el autor. Esta línea tiene su origen en el grupo del Profesor José Domínguez Abas
al en la

Universidad de Sevilla ha
e 
asi 30 años y es 
ontinuada desde mediados de los años 90 del

siglo pasado por este grupo de la ULPGC. Durante estos años, se ha desarrollado e implementado

un modelo numéri
o propio basado en el Método de los Elementos de Contorno (MEC) que

permite simular de forma realista la propaga
ión de ondas en medios in�nitos y la in�uen
ia

de los fenómenos de intera

ión entre regiones de distinta naturaleza, en la respuesta de los

sistemas bajo estudio. En el 
ampo de la dinámi
a estru
tural, el modelo analiza 
onjuntamente

la estru
tura, el terreno, el agua en 
asos 
omo embalses u otras estru
turas de 
onten
ión, e

in
luso regiones de naturaleza poroelásti
a (sedimentos, terrenos bajo el nivel freáti
o, et
.).

En este tipo de problemas, puede de
irse que este modelo ha sido referen
ia en los últimos

años ya que permite, de forma natural, la 
onsidera
ión rigurosa de la intera

ión entre todos

los medios presentes, así 
omo in
orporar el 
ará
ter viajero de la ex
ita
ión (onda sísmi
a,

vibra
ión produ
ida por maquinaria, et
.), aspe
to éste determinante en la respuesta. Este

modelo, si bien de apli
a
ión muy general, se ha utilizado hasta ahora prin
ipalmente para el

análisis de la respuesta sísmi
a de presas bóveda [MD93, DM93, MAD00, MAD02, MAD04,

AMD06℄, estru
turas pilotadas [VMAO03, MAD03, MAG05℄ o estru
turas enterradas po
o

esbeltas y masivas donde la hipótesis de in�nita rigidez puede 
omprometer los resultados

[VMAA07, VAS

+
13℄.

En los 10 últimos años, el interés del grupo también se ha dirigido en la realiza
ión de un


ódigo a
oplado de Elementos de Contorno y Elementos Finitos (MEC-MEF) tridimensional

para el análisis dinámi
o dire
to de estru
turas de edi�
a
ión pilotadas. Este modelo 
uenta


on las ventajas ya men
ionadas del modelo anterior para representar regiones semi�in�nitas

y la simpli�
a
ión que supone modelar vigas, pilares y pilotes de la estru
tura (estru
tura de

barras 
lási
a) 
on Elementos Finitos. Este modelo ha permitido el análisis de la respuesta de


imenta
iones pilotadas (impedan
ias e intera

ión 
inemáti
a ante un tren de ondas in
idente

verti
al) [PAM07, PAM08, PAMS10, PAMS12, PSAM15, MPA

+
14℄, así 
omo el estudio di-

re
to del 
onjunto suelo�
imenta
ión�estru
tura sometido a ondas sísmi
as o vibra
iones que

se propagan por el terreno [PAM09, PAM11℄ o la 
ara
teriza
ión prá
ti
a de los efe
tos de

intera

ión suelo�estru
tura mediante subestru
tura
ión [MPAM13, MPAM15℄.

Por otra parte, y también basados en el MEC, el grupo ha dedi
ado parte de sus esfuerzos

en estos años al desarrollo de modelos numéri
os para el estudio de la propaga
ión de ondas

a
ústi
as en 
ampo abierto. Así, se han explotado las ventajas del método para 
rea
ión de

modelos (fundamentalmente 2D) que se han apli
ado al estudio en el dominio de la fre
uen
ia de

la e�
a
ia a
ústi
a de pantallas anti�ruido. En este sentido, una revisión del método orientado

a esta apli
a
ión, el 
ódigo de ordenador desarrollado y los resultados más desta
ados obtenidos

hasta esa fe
ha fueron publi
ados en 2005 [MA05℄. Posteriormente, y ya ensamblados en 
ódigos


on algoritmos genéti
os (AG), han 
omenzado a apli
arse en la búsqueda de per�les de pantalla

que maximi
en la atenua
ión del impa
to [GAMW10℄.

Así, tomando 
omo punto de partida y matriz estos modelos dinámi
os a
oplados de elementos

de 
ontorno, se han in
orporado 
on esta tesis una serie de nuevas habilidades que permiten

abordar problemas estru
turales que involu
ran estru
turas enterradas o semienterradas del tipo

pozo o silo de 
imenta
ión, y también estru
turas de edi�
a
ión 
imentadas en suelos elásti
os
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o poroelásti
os a través de elementos masivos, rígidos, de 
imenta
ión. La modeliza
ión toma


omo elementos de análisis tanto el MEC 
omo otros métodos de 
ál
ulo, 
omo pueden ser

modelos simpli�
ados tipo Winkler.

A lo largo de este apartado se des
riben de forma resumida los 
ontenidos de las líneas de trabajo

previamente desarrolladas (que han supuesto las herramientas de partida) y los prin
ipales

resultados a que han dado lugar. En el próximo apartado se 
entra la aten
ión ha
ia los objetivos

y al
an
e de las a
tividades desarrolladas en el mar
o de esta tesis do
toral.

1.2.1 Líneas de trabajo desarrolladas

1.2.1.1 Problemas de intera

ión suelo�agua�estru
tura. Respuesta sísmi
a de presas

bóveda.

El nivel de 
omprensión de los aspe
tos vin
ulados al 
omportamiento estru
tural bajo 
arga

dinámi
a ha experimentado importantes avan
es, en gran medida motivados por el importan-

te desarrollo de herramientas numéri
as que permiten 
uanti�
ar la respuesta sobre modelos

deterministas. En los últimos treinta años se han desarrollado modelos progresivamente más

so�sti
ados y 
omplejos que han permitido representar y 
uanti�
ar la verdadera importan
ia

de fenómenos 
omo la intera

ión entre el suelo y la estru
tura o la estru
tura y el �uido, la

topografía y geología del emplazamiento, el 
ará
ter espa
ial de la ex
ita
ión sísmi
a, et
., en

la respuesta sísmi
a de las estru
turas.

El estudio de la respuesta sísmi
a de presas bóveda es 
omplejo debido a la existen
ia de

medios de diversas 
ara
terísti
as (hormigón, ro
a, agua, sedimentos de fondo), 
ada uno de

los 
uales presenta un 
omportamiento propio diferente de los demás. Ante una soli
ita
ión

sísmi
a estos medios intera
túan entre sí formando un sistema a
oplado en el que ninguna

de las partes puede ser estudiada aisladamente. Además, para 
ompli
ar más el análisis, los

dominios son muy extensos o prá
ti
amente in�nitos en la prá
ti
a. Este he
ho di�
ulta el

estudio ya que a diferen
ia del análisis estáti
o, en el 
aso dinámi
o a

identes muy alejados

de un punto pueden tener una gran in�uen
ia sobre el movimiento y tensiones a que éste se

ve sometido. Además, en el 
aso de presas bóveda, el problema tiene una geometría que no

permite simpli�
a
ión dimensional alguna y ha de ser estudiado 
on modelos que 
ontemplen

su realidad tridimensional.

En España, ya desde 1986, el grupo de José Domínguez en la Universidad de Sevilla 
omenzó

el desarrollo de un modelo numéri
o que ha
e uso del Método de los Elementos de Contorno

y que puede tener en 
uenta rigurosamente importantes fa
tores que, o no eran 
onsiderados

por los modelos existentes de Elementos Finitos o lo eran de una forma simpli�
ada o po
o

rigurosa. Cabe desta
ar los efe
tos de intera

ión 
ombinada suelo�presa�embalse, el efe
to de

la geometría real del embalse, la topografía lo
al o el efe
to de los desplazamientos diferen
iales

de la ex
ita
ión. Ini
ialmente de 
ará
ter bidimensional, apli
ado al estudio sísmi
o de presas

de gravedad [DM89a, DM89b℄ se extendió a prin
ipios de los años 90 al análisis de presas

bóveda tridimensionales [DM93, MD93℄ 
onvirtiéndose en un modelo de referen
ia para mu
hos

investigadores a nivel interna
ional. Un 
ompendio detallado de los trabajos pioneros del grupo

de Sevilla en la formula
ión y apli
a
ión del MEC a este y otros 
ampos de la elastodinámi
a

pueden 
onsultarse en Domínguez (1993) [Dom93℄.

Entre los diferentes modelos numéri
os previos para abordar el problema 
abe desta
ar los desa-

rrollados por el grupo de Anil K Chopra en la Universidad de California en Berkeley [FC86, FC87℄.

Se trata de un modelo tridimensional de elementos �nitos que tenía en 
uenta la existen
ia de

los tres medios, la 
ompresibilidad de agua y la �exibilidad del suelo. Sus prin
ipales limita
iones
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ión

eran: a) El suelo se representa a través de una malla de elementos �nitos que se extiende hasta


ierta distan
ia de la presa. Los efe
tos de re�exión que impli
an el trun
ar la dis
retiza
ión

de este medio se evitaban 
onsiderando que sus elementos tienen masa nula; b) La intera

ión

suelo�embalse se estima a través de un modelo simpli�
ado ha
iendo uso de 
oe�
ientes de

absor
ión 
uyo valor depende de las propiedades del fondo del embalse, e introdu
e un alto

grado de in
ertidumbre. Si bien este modelo representó un avan
e importante en el tratamiento

riguroso del problema, las simpli�
a
iones des
ritas le impedían 
onsiderar ade
uadamente el

efe
to de intera

ión mutua. Asimismo, este modelo no podía tener en 
uenta la in�uen
ia que

en la respuesta tiene la distribu
ión espa
ial de la ex
ita
ión. Posteriormente Zhang y Chopra

[ZC91℄ y Tan y Chopra [TC95a, TC95b℄ mejoraron el modelo anterior introdu
iendo elemen-

tos de 
ontorno para el suelo, si bien el estudio de la presa y el terreno no puede realizarse


onjuntamente.

Hasta ese momento, son muy po
os los estudios publi
ados que in
luyen una ex
ita
ión no

uniforme para presas bóveda tridimensionales [CH87, ZZ88, NH90, KT91a, KT91b℄ o más

re
ientemente [Cam00, Alv04, AH06, WC10, CW10℄. Todos 
oin
iden en que los efe
tos de

la varia
ión espa
ial de las ondas son relevantes pero, también todos, in
luyen importantes

simpli�
a
iones (suelos sin masa, 
añones uniformes, et
.). Una revisión re
iente de estos pro-


edimientos puede en
ontrarse en el Chopra (2012) [Cho12℄.

El arrastre y sedimenta
ión de fangos provo
a, 
on el trans
urso del tiempo, la existen
ia en

el fondo del embalse de un depósito de material 
uyo espesor puede ser, en algunos 
asos, del

orden de la mitad de la profundidad de la presa. Estos sedimentos no sólo modi�
an el per�l

geométri
o del fondo, sino que también afe
tan a la intera

ión dinámi
a entre el agua y los


ontornos que delimitan el vaso, al tiempo que juegan un importante papel al absorber parte

de las ondas que los atraviesan.

Ini
ialmente, el efe
to de los sedimentos en la respuesta dinámi
a de presas de gravedad se

tuvo en 
uenta mediante modelos muy simpli�
ados. Así, Fenves y Chopra [FC85℄ fueron los

primeros en presentar un modelo 2D que in
luía la absor
ión en el fondo del embalse mediante

un 
oe�
iente de re�exión de a
uerdo 
on la teoría monodimensional de propaga
ión de ondas.

El mismo tipo de simpli�
a
ión fue empleado, ahora ya para problemas tridimensionales, en el

modelo ya 
omentado que Fok y Chopra [FC86, FC87℄ presentaron para el análisis sísmi
o de

presas bóveda. En ambos 
asos el valor de este 
oe�
iente de re�exión, que debía ser estimado

a partir de las propiedades del sedimento y del terreno, introdu
e inevitablemente una doble

fuente de in
ertidumbre: por un lado a
er
a de su valor para una situa
ión real 
on
reta, y

por otro a
er
a de la aptitud de este modelo monodimensional de intera

ión para representar


on rigor los fenómenos de intera

ión entre el embalse y sus 
ontornos para un problema


uyo 
ará
ter real es 2D ó 3D. Aun así, más re
ientemente, Chuhan et al. [CCwG01℄ abordan

el 
ál
ulo de 
oe�
ientes de absor
ión, y proponen de nuevo un modelo monodimensional

para una geometría que 
onsiste en una lámina de agua sobre un estrato que representa el

sedimento, y que es modelado bien 
omo medio vis
oelásti
o o bien 
omo un medio poroelásti
o


ompletamente saturado. Los valores obtenidos de di
ho 
oe�
iente son utilizados luego por

los autores en el 
ódigo de elementos �nitos de Hall y Chopra [HC83℄ para el estudio del efe
to

de la 
ompresibilidad del embalse en una presa ar
o bidimensional.

Modelos posteriores más avanzados 
onsideran el sedimento 
omo una región más del problema

y de naturaleza vis
oelásti
a 
uasi�in
ompresible. En estos modelos la intera

ión dinámi
a

entre regiones se estable
e de forma rigurosa a través de e
ua
iones adi
ionales de equilibrio y


ompatibilidad (en problemas 2D Lofti et al. [LRT87℄ o Medina et al. [MDT90℄; en modelos

3D Lin y Tassoulas [LT87℄).

Con todo ello, mu
hos trabajos posteriores 
oin
iden en que el modelo más apropiado para el
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1 Introdu

ión, desarrollos previos y des
rip
ión de objetivos

estudio del 
omportamiento dinámi
o de los sedimentos es el que los representa 
omo un medio

de naturaleza poroelásti
a [Bio56a℄. En este modelo, Biot 
on
ibe el medio 
onstituido por dos

fases (un esqueleto elásti
o que representa la matriz sólida y un medio �uido 
ompresible que

representa el agua que �uye por los intersti
ios del esqueleto) si bien formula su 
omporta-

miento desde un punto de vista no mi
ros
ópi
o de�niendo variables que pueden ser entendidas


on 
ará
ter promedio. Así, 
on un modelo de estas 
ara
terísti
as, Cheng [Che86℄ estudia la

in�uen
ia del sedimento y sus propiedades en el per�l de presiones hidrodinámi
as sobre la pared

de una presa rígida. Se trata de un problema monodimensional que permitió a su autor poner

de mani�esto que existen sensibles diferen
ias en los resultados en fun
ión de la 
ompresibilidad

del sedimento y su grado de satura
ión (aire retenido en la masa �uida; [Ver69℄). Bouga
ha

y Tassoulas [BT91b, BT91a℄ desarrollaron un modelo a
oplado 2D de elementos �nitos para

el análisis dinámi
o de presas de gravedad, que in
orpora una lámina uniforme de sedimento

poroelásti
o que des
ansa sobre un estrato de suelo elásti
o 
on base rígida. Los mismos autores

[BT06℄ publi
an una revisión de este modelo donde referen
ian en detalle los trabajos realiza-

dos por el Grupo del SIANI. Posteriormente, Domínguez et al. [DJG97℄ ampliaron el modelo

de elementos de 
ontorno bidimensional de Domínguez y Medina [DM89a, DM89b℄ para in
or-

porar sedimentos de naturaleza poroelásti
a. Esto último fue posible de modo sen
illo gra
ias

a una novedosa formula
ión integral del problema poroelásti
o llevada a 
abo por Domínguez

[Dom91, Dom92℄ apli
ada primero a problemas 2D por los mismos autores [JGD97℄ y que pudo

luego extenderse a problemas tridimensionales.

En este punto se presenta el modelo tridimensional de elementos de 
ontorno para el análisis

dinámi
o de presas bóveda desarrollado en el grupo del Instituto SIANI de la ULPGC, desa-

rrollado a partir de la idea bási
a de los modelos 2D de Domínguez y 
olaboradores, esto es,

el análisis dire
to a
oplado de regiones tratadas 
on Elementos de Contorno. Se pretendía 
on

ello, formular e implementar una alternativa más realista para el problema que pretende re-

solverse: determinar la respuesta dinámi
a de una estru
tura de estas 
ara
terísti
as ante una

ex
ita
ión 
onsistente en una onda armóni
a plana que in
ide 
on ángulo variable desde zonas

alejadas. Sin hipótesis simpli�
adoras, el modelo tiene en 
uenta el 
ará
ter tridimensional del

problema real, los efe
tos de intera

ión mutua entre regiones de diferente naturaleza (presa de

hormigón, suelo, agua y sedimentos porosos para los 
uales 
abe esperar un 
omportamiento

a
oplado muy distinto del que presentarían a
tuando independientemente) y el 
ará
ter espa
ial

o naturaleza propagatoria de la ex
ita
ión.

Todas las regiones impli
adas son dis
retizadas en elementos de 
ontorno y se formulan desde

planteamientos integrales propios que impli
an a variables primarias diferentes y que dependen

de la naturaleza del dominio analizado. Los efe
tos de intera

ión entre 
ualesquiera dos de

estos dominios se tienen en 
uenta de forma rigurosa imponiendo 
ondi
iones de equilibrio

y 
ompatibilidad adi
ionales entre estas variables en las interfa
es. El agua se modela 
omo

un �uido 
ompresible, el terreno ro
oso 
omo un medio elásti
o no �nito y los sedimentos


omo un medio de naturaleza poroelásti
a saturado o no de agua. El 
ará
ter espa
ial de

la ex
ita
ión, su amortiguamiento por radia
ión así 
omo los otros fa
tores topográ�
os y

geológi
os responsables de efe
tos lo
ales, son tenidos en 
uenta de forma rigurosa y natural.

Ya los primeros trabajos [DM93℄ pusieron de mani�esto serias dis
repan
ias entre los resultados

obtenidos a través del modelo de Fok y Chopra [FC86, FC87℄ y los resultantes de un modelo

de intera

ión rigurosa.

Posteriormente, se amplía la de�ni
ión de la ex
ita
ión [MAD00, MAD02℄ in
orporando ondas

planas tipo SH, P, SV y Rayleigh que in
iden 
on ángulo variable sobre el emplazamiento. Se

analiza también la in�uen
ia de la geometría del 
añón, su profundidad y las importantes alte-

ra
iones que provo
a sobre el 
ampo in
idente su 
ará
ter tridimensional. Hasta ese momento,

la mayoría de los trabajos que ponen de mani�esto estos efe
tos lo
ales se habían realizado
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1.2 Ante
edentes: modelos desarrollados en el grupo de investiga
ión

sobre geometrías bidimensionales: [Tri73, Dra82, Won82, SSBH85, NH90℄ o posterioremente

[ÁRSSBA04℄.

Se in
orporan los sedimentos de fondo 
omo una nueva región de elementos de 
ontorno 
on

propiedades poroelásti
as [AMD01, MAD04℄. Además de resultados en fre
uen
ia que muestran

la in�uen
ia del espesor del sedimento y su grado de satura
ión, en estas referen
ias se presen-

tan resultados en el dominio del tiempo obtenidos ante terremotos reales. La versatilidad 
on

la que se ha dotado al modelo, también permite estudiar problemas que simulan grados de 
on-

solida
ión 
re
ientes 
on la profundidad [AMD06℄ y que van desde �uidos densos en super�
ie

[CH93℄ hasta sólidos porosos 
onsolidados a lo largo del espesor de la masa sedimentaria.

Estos desarrollos han permitido estudios posteriores exhaustivos de la in�uen
ia de las 
ondi
io-

nes del embalse (altura de llenado, espesor de sedimentos, grado de satura
ión, et
.) [GAC

+
14℄

o las 
ara
terísti
as de la ex
ita
ión (tipo/s de onda/s in
idente, ángulo de in
iden
ia) en

la variabilidad de la respuesta del sistema ante terremotos sintetizados a partir espe
tros de

respuesta re
ogidos en la Normativa [GAM11℄.

Se puede de
ir que el modelo desarrollado es a
tualmente re
ono
ido por ser 
apaz de represen-

tar rigurosamente en tres dimensiones los distintos fa
tores que intervienen en este problema

a
oplado (topografía y propiedades geológi
o-geoté
ni
as del emplazamiento, geometría del

embalse, sedimentos, et
.) y es, sin duda, un referente a nivel interna
ional. Así queda re�ejado

en las referen
ias que de él ha
en otros autores (ver p.e. la amplia reseña que realiza Zerva

[Zer09℄) y en el interés que han mostrado en sus posibilidades otros grupos de investiga
ión.

En este sentido, en 2005 este modelo fue 
edido al grupo del Profesor JH Prevost en el De-

partamento de Ingeniería Civil y Medioambiental de la Universidad de Prin
eton y utilizado

en sendos trabajos rela
ionados 
on la in�uen
ia de la geometría del embalse en la respues-

tas sísmi
a de presas de gravedad y el estudio dinámi
o a
oplado del 
onjunto presa�torre de


apta
ión [MYP07, MYP09℄.

1.2.1.2 Problemas de intera

ión suelo�estru
tura. Respuesta dinámi
a de estru
tu-

ras de edi�
a
ión pilotadas.

Algunos miembros del grupo del Instituto SIANI de la ULPGC ya han venido desarrollando el

estudio de rigide
es dinámi
as de 
imenta
iones super�
iales y enterradas sobre suelos vis
oe-

lásti
os desde ha
e más de dos dé
adas [ED89, EA94℄ o poroelásti
os [AMC99, MAC99℄. Estos

trabajos están basados en las dos monografías que presenta Domínguez en el M.I.T. en 1978

[DR78a, DR78b℄ y que, por vez primera, representan la posibilidad de modelado numéri
o del

suelo 
omo un medio tridimensional in�nito ha
iendo uso de la formula
ión dire
ta del MEC.

Apli
able a multitud de problemas en ingeniería 
ivil, este pro
edimiento 
onstituyó un gran

avan
e en ese momento ya que permitía superar 
on fa
ilidad las limita
iones del MEF en

problemas dinámi
os para este tipo de medios. Treinta años después, estos trabajos 
ontinúan

siendo un referente a nivel interna
ional (ver p.e. [Bes87, Bes97℄) y ya se apli
an de forma

habitual en multitud de problemas que pretenden tener en 
uenta los fenómenos de intera

ión

suelo�estru
tura de forma rigurosa.

Con respe
to a las 
imenta
iones por pilotaje, la versatilidad del 
ódigo a
oplado de elementos

de 
ontorno desarrollado para el análisis de la respuesta sísmi
a de presas bóveda, permitió al

grupo del SIANI�ULPGC implementar de forma sen
illa un modelo riguroso en tres dimensiones

para el estudio de la respuesta dinámi
a de este tipo de 
imenta
iones hin
adas en el semiespa
io

vis
oelásti
o [VMAO03, MAD03℄ y poroelásti
o [MAG05℄ homogéneos. Así, este modelo no

desarrolla simpli�
a
iones dimensionales ni de 
omportamiento 
omo viga para el/los pilotes de

la 
imenta
ión, sino que éstos son modelados desde una formula
ión elásti
a de medio 
ontinuo.
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1 Introdu

ión, desarrollos previos y des
rip
ión de objetivos

Esta 
ara
terísti
a, si bien lo 
onvierte en un modelo 
ompletamente riguroso y apli
able a otros

problemas 
on presen
ia de pilotes (ver p.e. [KPB99℄), representa su prin
ipal in
onveniente en

otros 
asos ya que impli
a la genera
ión de dis
retiza
iones 
on un elevado número de grados

de libertad y que, por tanto, ne
esitan de grandes re
ursos informáti
os para su evalua
ión.

Por este motivo, el siguiente paso del grupo SIANI�ULPGC fue la formula
ión e implementa
ión

de un modelo que utiliza Elementos de Contorno para el suelo y Elementos Finitos tipo viga

Euler�Bernoulli para los pilotes [PAM07℄ y que permite el estudio de grupos de pilotes 
on

relativamente po
os grados de libertad. Este modelo se ha extendido al análisis dinámi
o de


imenta
iones 
on pilotes in
linados [PAMS10, PAM11℄ y ha sido ampliado para in
luir la super-

estru
tura en un análisis 
onjunto que permita 
uanti�
ar efe
tos de intera

ión mutua entre va-

rias estru
turas pilotadas presentes en el emplazamiento estudiado [PAM09, PAM11, ÁPAM15℄.

Inspirado en otro modelo estáti
o de elementos de 
ontorno para el análisis de 
imenta
iones

pilotadas previo [FMdP05℄, tiene la ventaja pro
edimental de 
onsiderar la intera

ión pilotes�

suelo 
omo una 
arga interna al terreno, a diferen
ia de otros modelos similares que dis
retizan

la interfase suelo�pilote para luego apli
ar simpli�
a
iones que permiten el a
oplamiento 
on

elementos �nitos tipo viga [CVA99, MD09℄.

Ya en esta fase, el 
ódigo ha permitido el análisis de esfuerzos en pilotes provo
ados por

seísmos arti�
iales sintetizados a partir de las formas espe
trales de�nidas en la Normativa, y


onstituidos por trenes de onda de distinto tipo y ángulo de in
iden
ia [ZAPM13℄. También, en

el 
aso de pilotes in
linados, ha permitido el estudio de la in�uen
ia de su grado de in
lina
ión en

los valores máximos de la envolvente de esfuerzos para seísmos 
on in
iden
ia verti
al, también

sintetizados a partir de espe
tros de la Norma [PSAM15℄.

Si bien el modelo desarrollado permite el análisis 
onjunto y dire
to del suelo�
imenta
ión y

estru
tura, también se ha utilizado 
omo herramienta numéri
a para la realiza
ión de estudios

paramétri
os mediante té
ni
as de subestru
tura
ión [MPAM13, MPAM15℄. Estos estudios han

permitido 
omprender y 
uanti�
ar (periodo y amortiguamiento de sistemas de 1 gdl equivalen-

tes) los efe
tos de intera

ión suelo�estru
tura en fun
ión de las 
ara
terísti
as del problema

(
imenta
ión, estru
tura y rigidez relativa estru
tura�suelo). Las 
on
lusiones obtenidas tienen

apli
a
ión inmediata en análisis estru
tural prá
ti
o. Puede de
irse que es éste un pro
edi-

miento de análisis 
lási
o en la literatura, y 
on él el número de referen
ias bibliográ�
as es

elevado en el 
aso de estru
turas sobre 
imenta
iones super�
iales o po
o enterradas (ver e.g.

[VM74, Bie75, TT92, APR98℄. Sin embargo, han sido muy es
asas las aporta
iones en esta

dire

ión en el 
aso de edi�
ios 
imentados 
on pilotes [Rai75, AA03, MMK07℄. En [MPAM13℄

se dis
ute en detalle el pro
edimiento más ade
uado para determinar las propiedades de este

sistema equivalente y se apli
a a 
imenta
iones 
on pilotes verti
ales. En [MPAM15℄ se amplía

este estudio al 
aso de 
imenta
iones 
on pilotes in
linados.

En la bibliografía y a lo largo de los últimos 30 años, existen modelos similares pero po
os tan

versátiles 
omo el desarrollado en el grupo SIANI�ULPGC. Desta
an los trabajos de la es
uela de

los profesores Kausel en el M.I.T. [KK91℄, Banerjee en Bu�alo [SDB85, MB90, GB98℄ y Gazetas

en la Universidad de Atenas [MG92, MG99℄. En este apartado, son de referen
ia obligada los

trabajos de Poulos [PD80℄ y su gran número de 
ontribu
iones en el análisis estáti
o/dinámi
o

de 
imenta
iones pilotadas. En el 
aso de pilotes hin
ados en suelos poroelásti
os son mu
has

las referen
ias a pro
edimientos analíti
o�numéri
os siguiendo la línea de Muki y Sternberg

[MS69℄. Así puede 
itarse [RS87, ZR99, JZ01, XLW10℄. Estos últimos autores 
itan 
omo

úni
a referen
ia de modelo MEC apli
ado al problema la publi
ada por el grupo SIANI�ULPGC

[MAG05℄.

Es importante desta
ar la 
olabora
ión re
ientemente ini
iada 
on el Grupo del profesor R Ga-

llego (Universidad de Granada) en el sentido de in
orporar la experien
ia que di
ho grupo ha
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1.3 Objetivos de la tesis y 
ontribu
iones originales

a
umulado en el uso de solu
iones fundamentales del semiespa
io vis
oelásti
o estrati�
ado

[PG02, GPMC06, MCG07℄, que pueden ser in
luidas en los 
ódigos desarrollados por el equipo

de la ULPGC para abordar problemas de estru
turas pilotadas en suelos estrati�
ados.

1.3 Objetivos de la tesis y 
ontribu
iones originales

En el 
ontexto que a
aba de resumirse en el apartado anterior, esta tesis pretende 
ontribuir al

avan
e en el estado de 
omprensión de problemas dinámi
os que involu
ran sistemas estru
tura-

les suelo�estru
tura. En 
on
reto, la tesis aborda el estudio parti
ular de tipologías estru
turales

mási
as po
o esbeltas, enterradas o semi�enterradas, en las 
uales el 
omportamiento estru
tu-

ral está muy 
ondi
ionado por la 
orre
ta estima
ión de su rigidez en rela
ión 
on la rigidez del

suelo. Para este análisis se hará uso de modelos muy rigurosos de Elementos de Contorno pero

también se desarrollarán modelos simpli�
ados tipo Winkler. Un segundo objetivo de la tesis

será el desarrollo de un modelo numéri
o riguroso y e�
iente desde el punto de vista 
ompu-

ta
ional, para el 
ál
ulo sísmi
o de estru
turas de edi�
a
ión 
imentado en suelos vis
oelásti
os

o poroelásti
os a través de 
imenta
iones rígidas. El modelo desarrollado para tal �n hará uso

del MEC para la modeliza
ión del suelo y del MEF para la modeliza
ión del edi�
io.

A 
ontinua
ión se des
riben 
on algo más de detalle ambos objetivos.

1.3.1 Problemas de intera

ión suelo�estru
tura. Respuesta dinámi
a de

estru
turas enterradas po
o esbeltas.

Representa posiblemente el problema de referen
ia en el 
ampo de la investiga
ión de los

efe
tos de intera

ión dinámi
a suelo�estru
tura en la respuesta sísmi
a. Ya desde la dé
ada

de los años 50 del siglo XX son bastantes los trabajos que se realizan en el estudio de este

problema sobre todo 
omo 
onse
uen
ia de la 
onstru

ión de los primeros rea
tores nu
leares


iviles en emplazamientos de riesgo.

Al tratarse de estru
turas masivas, y siguiendo la línea de los primeros trabajos publi
ados sobre

este problema, la hipótesis de 
ál
ulo habitual era tratar la estru
tura 
omo un sólido rígido

enterrado en un suelo 
onsiderado un sólido deformable. Esta hipótesis permitía el empleo de

té
ni
as de subestru
tura
ión para la obten
ión de la respuesta. Este tratamiento se justi�
aba

en aquellos años a tenor de las herramientas disponibles y sólo en determinados 
asos. Considerar

la estru
tura 
omo un sólido rígido en un problema dinámi
o permite simpli�
ar el análisis

de forma 
onsiderable. Se trata de una hipótesis de trabajo muy habitual para estru
turas

enterradas po
o esbeltas, si bien, dependiendo del problema, puede dar lugar a resultados que


omprometen la seguridad.

Un planteamiento más riguroso ha
iendo uso de un modelo dire
to a
oplado 
omo el desa-

rrollado previamente en el grupo de la ULPGC permite tener en 
uenta la estru
tura 
on una

estima
ión más realista de su rigidez y será objeto de esta tesis.

El objetivo último sería la elabora
ión de un 
riterio para estable
er en qué rango de dimensiones,

rigidez relativa suelo�estru
tura y valores de la fre
uen
ia de ex
ita
ión son de apli
a
ión las

té
ni
as 
lási
as. Di
ho de otra forma, en qué problemas es ne
esario a
udir a modelos más

realistas que 
onsideren la estru
tura 
on su verdadera rigidez, las intera

iones mutuas y

el 
ará
ter espa
ial de la ex
ita
ión sísmi
a de forma rigurosa. En la bibliografía hay po
os

trabajos en esta línea. Para el problema de impedan
ias de 
imenta
iones puede 
onsultarse

el trabajo pionero de Elsabee et al. [EMR77℄ o el más re
iente de Saitoh y Watanabe [SW04℄
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1 Introdu

ión, desarrollos previos y des
rip
ión de objetivos

en la misma dire

ión. Para estru
turas tales 
omo pozos, depósitos o esta
iones de bombeo

semienterradas, y hasta donde el autor de este trabajo 
ono
e, apenas existen referen
ias que

observan el problema en los términos planteados en esta tesis.

1.3.2 Problemas de intera

ión suelo�estru
tura. Modelo a
oplado EF�EC

para el análisis dinámi
o de edi�
ios.

En esta tesis se plantea la posibilidad de ampliar el ámbito de apli
a
ión de los 
ódigos pre-

viamente desarrollados para analizar efe
tos de intera

ión suelo�estru
tura en edi�
ios más

reales. El objetivo a medio y largo plazo es explorar la posibilidad de validar numéri
amente 
on

este 
ódigo los resultados experimentales existentes en la bibliografía y poner de mani�esto los

posibles efe
tos de intera

ión suelo�estru
tura y estru
tura�suelo�estru
tura (varios edi�
ios


er
anos).

Para ello se ha 
onfe

ionado un modelo 
on alto grado de generalidad in
orporando simpli�
a-


iones razonables aso
iadas al 
ará
ter del problema. Así, se formula e in
orpora el a
oplamiento

de regiones 
onsideradas rígidas (
imenta
ión) 
on medios vis
oelásti
os o poroelásti
os defor-

mables y 
ondi
iones de 
onta
to permeable e impermeable. En lo que se re�ere a la ex
ita
ión,

ésta puede estar 
onstituida por trenes de onda 
on in
iden
ia variable en el 
aso del semies-

pa
io vis
oelásti
o o 
on in
iden
ia verti
al en 
aso de terrenos de naturaleza poroelásti
a. Los

edi�
ios se modelan ha
iendo uso de elementos �nitos tipo viga Timoshenko 
on propieda-

des equivalentes. Esta estrategia garantiza problemas 
on un número razonable de grados de

libertad y permite analizar la respuesta de varios edi�
ios simultáneamente.

Así por tanto, y 
on lo di
ho, los objetivos de tesis que se presenta pueden sintetizarse en los

siguientes:

1. Apli
a
ión del modelo MEC al estudio sísmi
o de estru
turas enterradas �exibles po
o

esbeltas. Además de por su �exibilidad, la respuesta de estas estru
turas está determinada

también por las propiedades del terreno y las dimensiones de la propia estru
tura en

rela
ión 
on el intervalo de longitudes de onda relevantes de la ex
ita
ión sísmi
a. Se

pretende poner de mani�esto las dis
repan
ias en la respuesta (en rela
ión a la obtenida


on modelos simpli�
ados) sobre un problema real de estas 
ara
terísti
as.

2. Abordar la formula
ión de un modelo tipo Winkler sen
illo y de fá
il apli
a
ión para el

análisis de este tipo de estru
turas. La utiliza
ión de los resultados obtenidos del uso del

modelo MEC permitirá la formula
ión y 
alibra
ión de un modelo simple de este tipo que

permita el análisis dinámi
o de este tipo de estru
turas de forma a

esible al 
ole
tivo

profesional.

3. Avanzar en el desarrollo del modelo numéri
o a
oplado de elementos de 
ontorno, in
or-

porando al mismo nuevas presta
iones. En este sentido, se propone un modelo a
oplado

de elementos �nitos y elementos de 
ontorno para el análisis de estru
turas de edi�
a
ión.

Así, se formula e in
orpora el a
oplamiento de regiones 
onsideradas rígidas (
imenta-


iones) 
on medios vis
oelásti
os o poroelásti
os deformables y 
ondi
iones de 
onta
to

permeable e impermeable. En lo que se re�ere a la ex
ita
ión, ésta puede estar 
onstituida

por trenes de onda 
on in
iden
ia variable en el 
aso del semiespa
io vis
oelásti
o o 
on

in
iden
ia verti
al en 
aso de terrenos de naturaleza poroelásti
a. Los edi�
ios se mode-

lan ha
iendo uso elementos �nitos tipo viga Timoshenko 
on propiedades equivalentes.

Esta estrategia garantiza problemas 
on un número razonable de grados de libertad y

permitiría analizar la respuesta sísmi
a de varios edi�
ios simultáneamente.
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1.4 Organiza
ión del do
umento

1.4 Organiza
ión del do
umento

En el presente do
umento de tesis se des
riben en detalle las metodologías empleadas, las

formula
iones implementadas así 
omo los pro
esos de valida
ión. Asimismo se dis
uten los

resultados obtenidos y los análisis paramétri
os llevados a 
abo.

Después de los ante
edentes expuestos en los apartados anteriores, en el Capítulo 2 se presen-

tan las e
ua
iones bási
as que gobiernan el 
omportamiento dinámi
o de los medios elásti
os

y poroelásti
os, así 
omo la teoría de propaga
ión de ondas a través de este tipo de medios.

Se expone la formula
ión integral y la solu
ión fundamental, para después, rela
ionando las

variables fundamentales del dominio 
on los valores que adoptan éstas y sus derivadas en el


ontorno, presentar la formula
ión integral en el 
ontorno. Las e
ua
iones de di
ha formula
ión

integral en el 
ontorno se dis
retizan usando para ello el método de elementos de 
ontorno,


on una breve men
ión a los aspe
tos numéri
os más relevantes. Se 
ontinúa 
on la de�ni
ión

y apli
a
ión de las 
ondi
iones de 
ontorno para el a
oplamiento entre regiones 
on distinta

naturaleza y/o diferentes propiedades, en términos de las variables fundamentales y sus deri-

vadas, en las interfases entre ambas. Para a
abar el 
apítulo se presentan las e
ua
iones que

de�nen el 
ampo in
idente en un semiespa
io vis
oelásti
o o poroelásti
o. En el 
aso vis
oe-

lásti
o se presentan las expresiones ne
esarias para de�nir los 
ampos de desplazamientos y

tensiones 
uando se propagan ondas de tipo SH, P, SV y Rayleigh que llegan a la super�
ie


on un ángulo de in
iden
ia totalmente general. Para el 
aso poroelásti
o las expresiones que

se muestran son las 
orrespondientes a ondas transversales S y longitudinales P 
on in
iden
ia

verti
al.

En el Capítulo 3 se presenta el estudio de la respuesta de una estru
tura real de grandes

dimensiones, la 
ual está enterrada en gran parte de su longitud, y que puede ser 
onsiderada


omo po
o esbelta por el valor de la rela
ión entre la longitud y el an
ho de la misma. Para el

análisis de esta tipología estru
tural se ha utilizado tradi
ionalmente el método de los tres pasos.

Para el estudio que aquí se presenta se usa el método de elementos de 
ontorno expuesto en

el Capítulo 2, 
on el objetivo de 
omprar la respuesta obtenida a través de dos metodologías,

una de subestru
tura
ión, basada en la hipótesis de rigidez in�nita de la estru
tura, y otra

dire
ta en la que se 
onsidera un valor más realista de su rigidez estru
tural. La 
omparativa

de los resultados obtenidos apli
ando ambas metodologías muestran que la hipótesis de rigidez

in�nita puede infravalorar la respuesta, poniendo de mani�esto que debe prestarse la debida

aten
ión en la ele

ión de la metodología empleada para estos problemas 
lási
os de intera

ión

suelo�estru
tura.

De las 
on
lusiones sa
adas del Capítulo 3, se 
rea la ne
esidad de abordar un estudio que

permita determinar la importan
ia de la verdadera �exibilidad de la estru
tura enterrada para

la obten
ión de su respuesta sísmi
a. Así, en el Capítulo 4 se pretende presentar y desarrollar un

estudio paramétri
o sobre este aspe
to y que permita 
uanti�
ar el error que supone ha
er uso de

un modelo basado en la rigidez in�nita de la estru
tura. Para di
ho estudio se utiliza un modelo

simple tipo Winkler debido a que la gran 
antidad de 
asos para los que se aborda la obten
ión

de la respuesta obliga a utilizar una herramienta de 
ál
ulo po
o 
ostosa 
omputa
ionalmente.

En esa línea se aborda numéri
amente la resolu
ión de las e
ua
iones del problema mediante

el uso de elementos �nitos sen
illos tipo viga, o bien si la 
omplejidad del modelo y problema

lo permite, mediante la obten
ión dire
ta de la solu
ión analíti
a de las mismas. Se muestran

resultados estimando el error 
ometido al apli
ar la hipótesis de rigidez in�nita respe
to a los

resultados de una metodología que 
onsidera la �exibilidad de la estru
tura. Estos resultados

permiten por lo tanto tener un 
riterio de ele

ión para la metodología a apli
ar en fun
ión del

error 
ometido.
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1 Introdu

ión, desarrollos previos y des
rip
ión de objetivos

En el Capítulo 5 se presenta la formula
ión de un modelo a
oplado de elementos de 
ontorno y

elementos �nitos para el estudio de la respuesta dinámi
a y sísmi
a de estru
turas de edi�
a
ión.

Cuando la hipótesis de rigidez in�nita es apli
able a la 
imenta
ión, este modelo permite in
or-

porar regiones 
on 
omportamiento de sólido rígido embebidas en el terreno, el 
ual se modela


omo un semiespa
io vis
oelásti
o o poroelásti
o. Se expone la implementa
ión al modelo de

elementos de 
ontorno del Capítulo 2 la estrategia de a
oplamiento entre la malla de elementos

de 
ontorno y 
imenta
ión rígida, basada en la apli
a
ión de e
ua
iones adi
ionales de equilibrio

y 
ompatibilidad en las interfases entre el suelo y la 
imenta
ión. La superestru
tura se modela


omo una viga elásti
a y homogénea usando elementos �nitos de dos nodos tipo Timoshenko

que in
luyen la ex
entri
idad torsional del edi�
io. Al �nal de este 
apítulo se presentan varios

resultados de valida
ión del modelo.

El Capítulo 6 muestra los resultados de apli
a
ión del modelo MEC�MEF, formulado en el

Capítulo 5, para el estudio de la respuesta dinámi
a de una estru
tura de edi�
a
ión que presenta

ex
entri
idad torsional por la forma en U de su se

ión transversal. Se presentan resultados de

la respuesta dinámi
a de esta estru
tura 
imentada en un terreno vis
oelásti
o ante la a

ión

de ondas P, SV, SH y Rayleigh 
on in
iden
ia variable, para mostrar la in�uen
ia del ángulo de

in
iden
ia de la ex
ita
ión o de la intera

ión estru
tura�suelo�estru
tura por la presen
ia de

otra estru
tura 
er
ana. También se estudia la in�uen
ia en la respuesta al 
onsiderar el terreno


omo poroelásti
o, así 
omo los efe
tos de intera

ión estru
tura�suelo�estru
tura, ante la

a

ión de ondas S y P verti
ales.

El do
umento �naliza 
on un 
apítulo de revisión general, en que se desta
an las prin
ipales


on
lusiones y se propone una rela
ión de posibles desarrollos futuros de esta investiga
ión.

1.5 Finan
ia
ión re
ibida y produ
tividad 
ientí�
a

Esta tesis do
toral ha sido realizada 
on la �nan
ia
ión re
ibida a través del 
ontrato predo
to-

ral FPI aso
iada al Proye
to de investiga
ión �Estudio del 
omportamiento dinámi
o de presas

y pilotes in
luyendo efe
tos de intera

ión suelo�estru
tura, a

iones sísmi
as y propaga
ión

de ondas� (BIA2007-67612-C02-01). El autor de esta tesis es el bene�
iario de la be
a FPI

para la investiga
ión, 
on referen
ia BES-2009-029161, otorgada por el Ministerio de E
onomía

y Competitividad (MINECO) y aso
iada al men
ionado proye
to. El trabajo de investiga
ión

realizado durante la 
onfe

ión de esta tesis do
toral también ha sido �nan
iado por la Sub-

dire

ión General de Proye
tos de Investiga
ión del Ministerio de E
onomía y Competitividad

(MINECO) a través del proye
to BIA2010-21399-C02-01 y por la Agen
ia Canaria de Investi-

ga
ión Innova
ión y So
iedad de la Informa
ión (ACIISI) del Gobierno de las Islas Canarias y

FEDER a través del proye
to ProID20100224.

Produ
tividad 
ientí�
a

Artí
ulos en revistas 
ientí�
as ISI-JCR:

- L A Padrón, J J Aznárez, O Maeso, A Santana. Dynami
 sti�ness of deep foundations with

in
lined piles. Earthquake Engineering and Stru
tural Dynami
s, 39:1343�1367, 2010.

- J Vega, J J Aznárez, A Santana, E Alar
ón, L A Padrón, J J Pérez, O Maeso. On soil�

stru
ture intera
tion in large non�slender partially buried stru
tures. Bulletin of Earth-

quake Engineering, 11(5):1403�1421, 2013

- C Medina, L A Padrón, J J Aznárez, A Santana, O Maeso. Kinemati
 intera
tion fa
tors of
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1.5 Finan
ia
ión re
ibida y produ
tividad 
ientí�
a

deep foundations with in
lined piles. Soil Dynami
 and Earthquake Engineering, 53:160�

175, 2013.

- A Santana, J J Aznárez, L A Padrón, O Maeso. A BEM�FEM model for the dynami


analysis of building stru
tures founded on vis
oelasti
 or poroelasti
 soils. Bulletin of

Earthquake Engineering, 2015

Comuni
a
iones y ponen
ias en 
ongresos:

- Autores: J J Aznárez, A Santana, L A Padrón, O Maeso

Título: Modelo simple para el 
ál
ulo de la respuesta sísmi
a de una estru
tura enterrada

Tipo de parti
ipa
ión: Presenta
ión oral

Congreso: IX Congreso Iberoameri
ano de Ingeniería Me
áni
a

Lugar: Las Palmas de Gran Canaria (España)

Fe
ha: 17�20/11/2009

- Autores: L. A. Padrón, J. J. Aznárez, O Maeso, A. Santana

Título: Analysis of the dynami
 response of deep foundations with in
lined piles by a

BEM�FEM model

Tipo de parti
ipa
ión: Presenta
ión oral

Congreso: International 
onferen
e On Boundary Element Te
hniques (BeTeq-2010). Ad-

van
es in Boundary Element Te
hniques XI

Lugar: Berlín (Alemania)

Fe
ha: 12�14/07/2010

- Autores: A Santana, J J Aznárez, O Maeso, L A Padrón

Título: A BEM�FEM model for dynami
 soil�stru
ture and stru
ture�soil�stru
ture pro-

blems in elasti
 or poroelasti
 soils

Tipo de parti
ipa
ión: Presenta
ión oral

Congreso: 11th World Congress on Computational Me
hani
s (WCCM XI)

Lugar: Bar
elona (España)

Fe
ha: 20�25/07/2014

- Autores: L A Padrón, C Medina, G M Álamo, J J Aznárez, A Santana, O Maeso, F Gar
ía,

F Chirino

Título: Pilotes in
linados: situa
ión normativa y ventajas e in
onvenientes de su uso en

proye
tos de edi�
a
ión en zonas 
on riesgo sísmi
o

Tipo de parti
ipa
ión: Presenta
ión oral

Congreso: 19th International Congress on Proje
t Management and Engineering

Lugar: Granada (España)

Fe
ha: 15�17/07/2015
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E
ua
iones bási
as y propaga
ión

de ondas en problemas elásti
os y

poroelásti
os. Formula
ión

mediante el MEC

Capítulo2

2.1 Introdu

ión

Este 
apítulo 
omienza presentando las e
ua
iones bási
as que gobiernan el 
omportamiento

dinámi
o de los medios elásti
os y poroelásti
os, así 
omo la propaga
ión de ondas a través de

los mismos, en las se

iones 2.2 y 2.3 respe
tivamente. En el apartado 2.4 se exponen tanto la

formula
ión integral 
omo la solu
ión fundamental para ambos tipos de medios, para después,

rela
ionando las variables fundamentales del dominio 
on los valores que adoptan éstas y sus

derivadas en el 
ontorno, presentar la formula
ión integral en el 
ontorno. Posteriormente se

expli
a en el apartado 2.5 el pro
edimiento de dis
retiza
ión de las e
ua
iones presentadas para

la formula
ión integral en el 
ontorno, usando para ello el método de elementos de 
ontorno. En

el apartado 2.6 se expli
a el a
oplamiento entre regiones que por diferen
ia entre propiedades

y/o naturaleza, ne
esitan del 
umplimiento de 
ondi
iones de 
ontorno, en términos de variables

fundamentales y sus derivadas, en las interfases entre ambas. El último apartado 2.7 de este


apítulo presenta las e
ua
iones que de�nen el 
ampo in
idente en un semiespa
io vis
oelásti
o

o poroelásti
o. En el 
aso vis
oelásti
o se presentan las expresiones que de�nen el 
ampo

in
idente para ondas sísmi
as de tipo SH, P, SV y Rayleigh 
uando llegan a la super�
ie 
on

un ángulo de in
iden
ia totalmente general. Para el 
aso poroelásti
o las expresiones que se

muestran son las 
orrespondientes a ondas transversales S y longitudinales P 
on in
iden
ia

verti
al.

2.2 E
ua
iones de gobierno en elastodinámi
a y poroelasto-

dinámi
a armóni
as

La formula
ión presentada en este trabajo está en
aminada a obtener, de manera numéri
a, la

solu
ión de problemas dinámi
os planteados en medios elásti
os y/o poroelásti
os, homogéneos,

isótropos y lineales. Al igual que en el 
aso estáti
o, el primer paso es estable
er las e
ua
iones

de equilibrio y la ley de 
omportamiento del material que gobiernan el 
omportamiento diná-

mi
o de los medios impli
ados en el problema. Sin embargo, en el 
aso dinámi
o, las variables
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2 Elasti
idad y poroelasti
idad. Propaga
ión de ondas. Formula
ión mediante el MEC

del problema serán fun
iones 
on dependen
ia no sólo espa
ial sino también temporal, siendo

ne
esario in
luir las fuerzas iner
iales y de disipa
ión en las e
ua
iones.

2.2.1 E
ua
iones de gobierno en elastodinámi
a armóni
a

Siendo x el ve
tor que representa la posi
ión de 
ualquier punto del sólido Ω 
on respe
to

a un sistema de referen
ia 
artesiano �jo y t la variable tiempo, el tensor de deforma
iones

εi j en 
ualquier punto del sólido Ω puede ser obtenido a través del ve
tor desplazamiento

u(x, t) = (u1, u2, u3) de di
ho punto 
omo

εi j =
1

2
(ui, j +u j,i) ; i, j = 1,2,3 (2.1)

Por otro lado, las e
ua
iones de equilibrio de 
ualquier punto se expresan 
omo

σi j, j +Xi = ρ üi ; i, j = 1,2,3 (2.2)

donde σi j representa el tensor de tensiones, Xi las 
omponentes de las fuerzas de volumen y ρ
la densidad del material.

Por último, la rela
ión entre el tensor de tensiones y el tensor de deforma
iones se estable
e

a través de la ley de 
omportamiento. Esta rela
ión, también 
ono
ida 
omo ley 
onstitutiva,

viene dada, para materiales homogéneos, isótropos, 
on 
omportamiento elásti
o y lineal, por

la siguiente expresión:

σi j = λ δi j εkk +2 µ εi j ; i, j = 1,2,3 (2.3)

siendo δi j la delta de Krone
ker (δi j = 1 si i = j ; δi j = 0 si i 6= j). La dilata
ión volumétri
a

εkk será llamada en adelante e. La 
onstante de Lamé λ y el módulo de elasti
idad transversal

µ se rela
ionan 
on el módulo de elasti
idad E y el 
oe�
iente de Poisson ν mediante las

expresiones:

µ =
E

2(1+ν)
; λ =

ν E

(1+ν)(1−2ν)
(2.4)

El 
omportamiento dinámi
o de un 
uerpo elásti
o, homogéneo, isótropo y lineal está gobernado

por las expresiones (2.1), (2.2) y (2.3), las 
uales, para el 
aso tridimensional, forman un sistema

de 15 e
ua
iones y 15 in
ógnitas. De esta manera, sustituyendo (2.1) en (2.3), y luego la

expresión resultante en (2.2) se obtiene la e
ua
ión:

µ∇2u+(λ +µ)∇(∇ ·u)+X = ρ ü (2.5)

la 
ual es 
ono
ida 
omo e
ua
ión de Navier. Ésta 
onstituye en el 
aso tridimensional un grupo

de tres e
ua
iones que gobierna el movimiento en términos del ve
tor desplazamiento u, y ha

de satisfa
erse para todos los puntos del dominio Ω. La integra
ión de (2.5) para la obten
ión

del 
ampo de desplazamientos requiere de la imposi
ión de restri

iones en el 
ontorno Γ del

dominio Ω en términos de desplazamientos y/o tensiones 
ono
idos, así 
omo de 
ondi
iones

ini
iales para t = 0 en 
ada punto del medio ∀x ∈ Ω.
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2.2 E
ua
iones de gobierno en elastodinámi
a y poroelastodinámi
a armóni
as

Asumiendo que la ex
ita
ión y las 
ondi
iones de 
ontorno son de tipo armóni
o, el ve
tor

desplazamiento puede es
ribirse 
omo u(x, t) = u(x; ω)eiω t
, siendo ω la fre
uen
ia angular e i

la unidad imaginaria. La expresión (2.5) puede es
ribirse enton
es 
omo

µ ∇2u+(λ +µ)∇e+X =−ρ ω2 u (2.6)

teniendo en 
uenta que e = ∇ ·u.

Las variables del 
onjunto de e
ua
iones (2.6) dependen de la posi
ión y de la fre
uen
ia. Ahora,

la disipa
ión del medio elásti
o puede ser tenida en 
uenta 
onsiderando un valor 
omplejo de

µ(λ ) de la forma:

µ = Re[µ ] (1+2ξ i) (2.7)

siendo ξ el fa
tor de amortiguamiento de un sistema de un grado de libertad (ver [Dom93℄).

2.2.2 E
ua
iones de gobierno en poroelastodinámi
a armóni
a

El medio poroelásti
o puede des
ribirse 
omo aquel en el que 
oexisten dos fases (ver �gura 2.1),

una sólida denominada esqueleto sólido y otra �uida, la 
ual se 
onsiderará en este estudio 
omo

líquida, pero que podría ser también gaseosa. El esqueleto sólido es la fase de material sólido

provisto de hue
os o poros de tal forma que es posible el tránsito de la fase �uida a través

del medio. El índi
e de hue
os se denomina porosidad, la 
ual 
ontabiliza el espa
io hue
o

del esqueleto inter
one
tado o
upado por la fase �uida. Es más ade
uado llamarla porosidad

efe
tiva ya que los poros aislados se 
onsideran parte de la matriz sólida y no son tenidos

en 
uenta para determinar este índi
e. La porosidad efe
tiva (φ) (en adelante se le llamará

porosidad) es una de las prin
ipales 
ara
terísti
as de este tipo de medios y representa la fra

ión

del volumen total de material homogéneo o
upada por los intersti
ios o poros inter
one
tados. Si

la fase �uida llena 
ompletamente los intersti
ios del esqueleto diremos que el medio poroelásti
o

esta 
ompletamente saturado. Por el 
ontrario, si la fase �uida llena par
ialmente los poros de

la matriz sólida nos en
ontramos 
on un medio 
uasisaturado.

Fue Karl Terzaghi [Ter23, Ter25℄ el primero en proponer un modelo del medio similar al de la

�gura 2.1. Mauri
e Biot publi
a una serie de artí
ulos [Bio41b, Bio41a, BC41℄ en las que desa-

rrolla la teoría general del 
omportamiento de sólido poroelásti
os bajo 
arga estáti
a. El sólido

poroelásti
o de Biot es un medio 
onstituido por dos fases que se 
orresponde 
on la imagen de

la �gura 2.1. El medio en su 
onjunto es homogéneo e isótropo y tiene 
omportamiento elásti
o

lineal en el rango de pequeñas deforma
iones. El mismo Biot, algunos años después, genera-

liza la formula
ión 
uasiestáti
a anterior al 
aso dinámi
o para sólidos poroelásti
os isótropos

[Bio56a, Bio56b℄.

Aún 
onsiderando el medio poroelásti
o de naturaleza bifási
a, es posible abordar su 
omporta-

miento a nivel ma
ros
ópi
o estable
iendo unas propiedades medias del mismo de forma tal que

sean de apli
a
ión las hipótesis de isotropía y homogeneidad 
lási
as de la me
áni
a del medio


ontinuo. Por tanto, en 
ada punto geométri
o del medio 
on ve
tor de posi
ión x respe
to de

un sistema de referen
ia �jo y para 
ada instante t, se de�nen dos ve
tores desplazamiento, uno

aso
iado a la partí
ula sólida (esqueleto sólido) u(x, t) = (u1, u2, u3) y otro 
orrespondiente a

la partí
ula del �uido U(x, t) = (U1,U2,U3). Ambos desplazamientos deben entenderse 
omo

variables promedio. Se de�ne el tensor de deforma
iones en la fase sólida de la forma habitual

(2.1):
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Figura 2.1: Cará
ter bifási
o del medio poroso. Superposi
ión de la matriz sólida y la red de

poros.

εi j =
1

2
(ui, j +u j,i) ; i, j = 1,2,3 (2.8)

De igual manera, las dilata
iones volumétri
as en ambas fases responden a las expresiones:

e = ui,i ; Esqueleto sólido (2.9a)

ε =Ui,i ; Fase �uida (2.9b)

En lo que a las variables dinámi
as se re�ere, se 
omienza introdu
iendo el tensor de tensiones

sobre el material homogéneo σi j o tensor de tensiones totales. No existe ninguna diferen
ia 
on-


eptual respe
to del tensor de tensiones para sólidos elásti
os. Para 
ara
terizar 
ompletamente

el medio, junto al tensor de tensiones totales se introdu
e una variable dinámi
a aso
iada a la

fase �uida, la presión intersti
ial o presión de poro (p), ésta es la presión del �uido que o
upa

los intersti
ios del esqueleto sólido. Sin embargo, se utilizarán 
omo variables dinámi
as otras

dos rela
ionadas dire
tamente 
on las anteriores.

Una es la tensión equivalente en el �uido (τ), la 
ual se de�ne 
omo la tensión sobre el �uido si

se toma 
omo referen
ia el área total de material homogéneo. Así τ =−φ p. El signo negativo

está rela
ionado 
on el 
onvenio de signos adoptado para esta variable: positiva para la tra

ión

y negativa para la 
ompresión (la presión intersti
ial positiva representa la 
ompresión).

La otra variable es el tensor de tensiones sobre el esqueleto sólido (τi j), la 
ual se de�ne 
omo

la tensión apli
ada en la fase sólida del medio tomando 
omo referen
ia el área total de material

homogéneo.

El tensor de tensiones sobre el material homogéneo σi j puede es
ribirse en términos de estas

dos nuevas variables 
omo

σi j = τi j + τ δi j ; i, j = 1,2,3 (2.10)
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2.2 E
ua
iones de gobierno en elastodinámi
a y poroelastodinámi
a armóni
as

Entendido el medio poroelásti
o 
omo un material homogéneo, en términos del tensor de ten-

siones total las e
ua
iones de equilibrio tienen una expresión análoga a la 
orrespondiente a

sólido elásti
os teniendo en 
uenta las fuerzas de iner
ia de ambas fases

σi j, j + X̄i = ρ1 üi +ρ2Üi ; i, j = 1,2,3 (2.11)

donde ρ1 = (1 − φ)ρs y ρ2 = φ ρf, siendo φ la porosidad, ρs la densidad del material que


onforma la matriz sólida y ρf la densidad del �uido. Así, ρ1 y ρ2 son las densidades de la

fase sólida y líquida respe
tivamente referidas al volumen total del material homogéneo. X̄i es

la fuerza por unidad de volumen sobre el medio homogéneo, que 
onstituye un promedio de

las fuerzas por unidad del volumen sobre el material que 
onstituye 
ada fase a través de la

porosidad que se es
ribe X̄i = (1−φ)Fi+φ fi, siendo Fi las fuerzas por unidad de volumen sobre

el material sólido y fi sobre la fase �uida.

Siguiendo la teoría de Biot, las e
ua
iones de equilibrio en términos de las tensiones para ambas

fases, esqueleto sólido y fase �uida, que gobiernan el 
omportamiento de medios poroelásti
os

en régimen dinámi
o son respe
tivamente:

τi j, j +Xi = ρ11 üi +ρ12Üi +b(u̇i +U̇i) (2.12a)

τ,i +X ′
i = ρ12 üi +ρ22Üi −b(u̇i +U̇i) (2.12b)

para i, j = 1,2,3 y donde ρ11 = ρ1 −ρ12, ρ22 = ρ2 −ρ12 y ρ12 =−ρa, siendo Xi y X ′
i las fuerzas

de volumen de la fase sólida y �uida respe
tivamente, y ρa la densidad añadida. La 
onstante

de disipa
ión b se expresa 
omo:

b = ρf g
φ2

k
(2.13)

donde k(m/s

2) es la 
ondu
tividad hidrauli
a de Dar
y y g(m/s

2) la a
elera
ión de la gravedad

[BT91b℄. Esta 
onstante b representa las fuerzas de vis
osidad por unidad de volumen y por

unidad de velo
idad relativa del �uido respe
to de la matriz sólida. El término del que forma

parte 
onstituye la 
omponente disipativa que distingue al modelo poroelásti
o. Esta disipa
ión

está vin
ulada a la velo
idad relativa entre ambas fases y se anula 
uando no existe movimiento

relativo entre ellas.

En términos de la tensión equivalente en el sólido y �uido y las deforma
iones en ambas fases

[Bio56a℄, la expresión de la ley de 
omportamiento que se utiliza a lo largo de este trabajo se

es
ribe 
omo:

τi j =

(
λ +

Q2

R

)
eδi j +2 µ εi j +Qε δi j (2.14a)

τ = Qe+Rε (2.14b)

donde λ , µ , Q y R representan las 
onstantes elásti
as del medio o 
onstantes de Biot. Por un

lado λ y µ son la 
onstante de Lamé y el módulo de elasti
idad transversal 
orrespondientes

al esqueleto sólido drenado. Las 
onstantes Q y R están rela
ionadas 
on el 
omportamiento

a
oplado de ambas fases.
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Sustituyendo las e
ua
iones (2.14) en (2.12), pueden es
ribirse las e
ua
iones de equilibrio en

términos de las tres 
omponentes del desplazamiento de 
ada fase (ui,Ui) 
omo sigue:

µ ∇2ui +

(
λ +µ +

Q2

R

)
e,i +Qε,i +Xi = ρ11 üi +ρ12Üi +b(u̇i −U̇i) (2.15a)

(Qe+Rε),i +X ′
i = ρ12 üi +ρ22Üi −b(u̇i −U̇i) (2.15b)

Por tanto, las e
ua
iones de Navier para un 
uerpo poroelásti
o, que representan las e
ua
iones

de gobierno en términos de desplazamientos (u, U), son expresadas 
omo:

µ ∇2u+∇

[(
λ +µ +

Q2

R

)
∇ ·u+Q∇ ·U

]
+X = ρ11 ü+ρ12 Ü+b(u̇− U̇) (2.16a)

∇(Q∇ ·u+R∇ ·U)+X′ = ρ12 ü+ρ22 Ü−b(u̇− U̇) (2.16b)

siendo X y X′
los ve
tores de las fuerzas de volumen de la fase sólida y �uida respe
tivamente.

Este sistema de e
ua
iones diferen
iales (2.16) ha de satisfa
erse en todo punto del dominio

poroelásti
o y para 
ada instante. La solu
ión de estas e
ua
iones requiere el estable
imien-

to de 
ondi
iones de 
ontorno e ini
iales en términos de desplazamientos y tensiones en los

puntos del dominio. Cono
idos los desplazamientos de ambas fases pueden obtenerse las va-

riables 
inemáti
as deseadas y 
on ellas, las tensiones en ambas fases a través de la ley de


omportamiento.

Suponiendo un 
omportamiento armóni
o del 
ampo de desplazamientos de ambas fases,

u(x, t) = u(x; ω)eiω t
y U(x, t) = U(x; ω)eiω t

, las e
ua
iones de Navier para la poroelasti
idad

dinámi
a serán:

µ ∇2u+∇

[(
λ +µ +

Q2

R

)
e+Qε

]
+X =−ω2(ρ̂11 u+ ρ̂12 U) (2.17a)

∇(Qe+Rε)+X′ =−ω2(ρ̂12 u+ ρ̂22 U) (2.17b)

Con el �n de simpli�
ar la formula
ión, se utilizan en las e
ua
iones (2.17) parámetros 
omplejos

de densidad que in
orporan la 
onstante de disipa
ión a los términos de densidad 
ono
idos.

Estos parámetros de densidad son expresados de la forma siguiente [Nor85℄:

ρ̂11 = ρ11 − i
b

ω
; ρ̂22 = ρ22 − i

b

ω
; ρ̂12 = ρ12 + i

b

ω
(2.18)

Mientras que la formula
ión de e
ua
iones de gobierno (2.16) es
ritas en el dominio del tiempo

impli
a seis variables primarias, tres 
omponentes del desplazamiento para la fase sólida y

�uida respe
tivamente, la formula
ión del problema armóni
o (2.17) puede ha
erse en fun
ión

de 
uatro variables fundamentales. Esto es, tres 
omponentes del desplazamiento del esqueleto

sólido y la tensión equivalente en el �uido. Así, de las e
ua
iones (2.17b) y (2.14b), el ve
tor

desplazamiento de la fase �uida puede es
ribirse en términos de la tensión equivalente en la

misma y del desplazamiento de las partí
ulas del sólido 
omo sigue:

U =−∇τ +X′+ω2 ρ̂12 u

ω2 ρ̂22

(2.19)
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2.3 Propaga
ión de ondas en medios elásti
os y poroelásti
os

Sustituyendo ahora esta última expresión del desplazamiento de las partí
ulas de �uido en

(2.17a), se obtienen tres e
ua
iones de equilibrio en términos de u y τ . La 
uarta e
ua
ión

ne
esaria se obtiene apli
ando el operador divergen
ia sobre la expresión (2.17b) y 
onsiderando

la ley de 
omportamiento (2.14b) para ha
er desapare
er ε . Este pro
edimiento des
rito da


omo resultado las siguientes e
ua
iones:

µ ∇2u+(λ +µ)∇e+

(
Q

R
− ρ̂12

ρ̂22

)
∇τ +ω2

(
ρ̂12 ρ̂22 − ρ̂2

12

ρ̂22

)
u+X− ρ̂12

ρ̂22

X′ = 0 (2.20a)

∇2τ +ω2 ρ̂22

R
τ +ω2

(
ρ̂12 −

Q

R
ρ̂22

)
e+∇ ·X′ = 0 (2.20b)

Estas 
uatro e
ua
iones y las 
ondi
iones de 
ontorno 
ompletan la formula
ión dinámi
a del

medio poroelásti
o en el dominio de la fre
uen
ia. El 
ará
ter disipativo del esqueleto sólido

drenado es 
onsiderado a través de las expresiones de las 
onstantes de Lamé del tipo (2.7).

2.3 Propaga
ión de ondas en medios elásti
os y poroelásti
os

2.3.1 Propaga
ión de ondas en medios elásti
os

La integra
ión de la e
ua
ión (2.5) para el 
aso general no es una tarea trivial, teniendo en


uenta que las variables fundamentales (las tres 
omponentes del desplazamiento) se en
uen-

tran a
opladas. Para expresar di
has e
ua
iones de Navier, de manera que su solu
ión pueda

ser obtenida de manera más sen
illa para algunos problemas en parti
ular, existen varios pro
e-

dimientos. Entre ellos, los pro
edimientos que permiten desa
oplar este sistema de e
ua
iones

parten de los trabajos de Poisson, si bien es Sto
kes [Sto49℄ el primero que presenta una

formula
ión en términos de dilata
ión volumétri
a e y el ve
tor rota
ión w.

e = εkk = ∇ ·u (2.21a)

w = ∇×u (2.21b)

Asumiendo nulas las fuerzas de volumen y apli
ando el operador divergen
ia y rota
ional sobre

la e
ua
ión (2.5), se pueden es
ribir, respe
tivamente, las siguientes e
ua
iones de onda:

∇2e =
ë

c2
P

(2.22a)

∇2w =
ẅ

c2
S

(2.22b)

donde

c2
P =

λ +2µ

ρ
y c2

S =
µ

ρ
(2.23)

Las e
ua
iones (2.22a) y (2.22b) representan respe
tivamente la versión desa
oplada de las

e
ua
iones de Navier en términos de la dilata
ión y las tres 
omponentes del ve
tor rota
ión.
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Se trata de e
ua
iones de onda, la primera es
alar y la segunda ve
torial. Así, la 
omponen-

te dilata
ional o irrota
ional (aso
iada a 
ambios de volumen) se propaga 
on velo
idad cP,

mientras que la 
omponente rota
ional o equivolumial (aso
iada a 
ambios de forma) viaja 
on

velo
idad cS. En un medio homogéneo e isótropo in�nito ambas 
omponentes 
oexisten y se

propagan de manera independiente siendo cP > cS, razón por la 
ual en sismología se denomina

a las ondas irrota
ionales ondas primaras (ondas P) y a las equivolumiales ondas se
undarias

(ondas S), ya que las primeras al
anzan la esta
ión en menor tiempo desde el epi
entro del

seísmo.

Utilizando cP y cS 
omo 
onstantes 
ara
terísti
as del medio, podemos es
ribir las e
ua
iones

de Navier 
omo sigue:

−c2
S ∇×w+ c2

P ∇e = ü (2.24)

Para un problema de propaga
ión plana 
on velo
idad de onda c y dire

ión de propaga
ión

determinada por el ve
tor unitario s, el 
ampo de desplazamientos, en nota
ión 
ompleja y 
on

amplitud unitaria, puede expresarse 
omo sigue:

u = ei(ω t−k s·x)d (2.25)

siendo x el ve
tor de posi
ión, ω la fre
uen
ia angular, i =
√
−1, k = ω/c el número de onda

y d el ve
tor unitario en la dire

ión del movimiento. Sustituyendo ahora (2.25), 
ada uno de

los términos de (2.24) será:

∇×w =−k2s× (s×d)ei(ωt−k s·x)
(2.26a)

∇e =−k2 (s ·d)sei(ωt−k s·x)
(2.26b)

ü =−ω2 ei(ωt−k s·x)d (2.26
)

Por tanto, teniendo en 
uenta que s× (s×d) = (s ·d)s−d, la e
ua
ión (2.24) puede expresarse


omo sigue:

(c2
S − c2)d+(c2

P − c2
S)(s ·d)s = 0 (2.27)

y en 
onse
uen
ia

si

{
c = cS ⇒ s ·d = 0 ⇒ movimiento perpendi
ular a la dire

ión de propaga
ión

c = cP ⇒ s×d = 0 ⇒ movimiento paralelo a la dire

ión de propaga
ión


omo se ilustra en la �gura 2.2.

En este apartado sólo se han tratado los 
on
eptos esen
iales de la propaga
ión de ondas para

fa
ilitar una mejor 
omprensión de las próximas se

iones y 
apítulos. Una expli
a
ión más

profunda de la propaga
ión de ondas en elastodinámi
a puede en
ontrarse en [A
h73℄ y [ES75℄.
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2.3 Propaga
ión de ondas en medios elásti
os y poroelásti
os

x1, u1

x2, u2

x3, u3

x1, u1

x2, u2

x3, u3

s s

d
d

Onda P

c = cP

Onda S

c = cS

Figura 2.2: Desplazamientos y dire

ión de propaga
ión. Ondas planas P y S.

2.3.2 Propaga
ión de ondas en medios poroelásti
os

De manera análoga al 
aso elásti
o, también para un medio poroelásti
o, se pueden desa
oplar

y plantear las e
ua
iones de Navier en términos de la dilata
ión (e, ε) y el ve
tor rota
ión (w, Ω)
de ambas fases [Bio56a℄:

e = ∇ ·u ε = ∇ ·U (2.28a)

w = ∇×u Ω = ∇×U (2.28b)

Considerando estos operadores y apli
ando el operador divergen
ia a las e
ua
iones (2.16),

suponiendo además nulas las fuerzas de volumen, se obtiene:

∇2

[(
λ +2 µ +

Q2

R

)
e+Qε

]
= ρ11 ë+ρ12 ε̈ +b(ė− ε̇) (2.29a)

∇2(Qe+Rε) = ρ12 ë+ρ22 ε̈ −b(ė− ε̇) (2.29b)

De igual manera, la apli
a
ión del operador rota
ional sobre las e
ua
iones de Navier (2.16),

permite es
ribirlas 
omo:

µ ∇2w = ρ11 ẅ+ρ12 Ω̈+b(ẇ− Ω̇) (2.30a)

0 = ρ12 ẅ+ρ22 Ω̈−b(ẇ− Ω̇) (2.30b)

Éstas últimas son las e
ua
iones que gobiernan la 
omponente equivolumial del movimiento

(ondas transversales). Comenzando el estudio 
on esta 
omponente, se 
onsidera una onda

armóni
a que se propaga 
on igual velo
idad en ambas fases del medio y en sentido positivo

del eje x3. De esta manera, los ve
tores rota
ión pueden es
ribirse 
omo sigue:

w = Dw ei(ω t−kS x3)
(2.31a)

Ω = DΩ ei(ω t−kS x3)
(2.31b)
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siendo ω la fre
uen
ia angular, kS el número de onda y Dw, DΩ las amplitudes de la rota
ión del

sólido y �uido respe
tivamente. Sustituyendo (2.31) en (2.30b) y operando de manera sen
illa,

se obtiene la rela
ión entre la rota
ión del sólido y la del �uido 
omo:

Ω = Λw (2.32)

donde

Λ =
iω b+ω2 ρ12

iω b−ω2 ρ22

(2.33)

La expresión (2.33) depende de las propiedades iner
iales del medio, de la 
onstante de disi-

pa
ión y de la fre
uen
ia. El 
ará
ter 
omplejo de Λ indi
a que ambos ve
tores rota
ión están

desfasados. Teniendo en 
uenta las rela
iones (2.18), se puede es
ribir (2.33) 
omo

Λ =− ρ̂12

ρ̂22

(2.34)

Sustituyendo (2.31) y (2.32) en (2.30a), la expresión del número de onda 
orrespondiente puede

es
ribirse 
omo:

k2
S =

ρ ω2

µ
(2.35)

donde se introdu
e una variable ρ 
uya expresión es:

ρ =
ω2 (ρ2

12 −ρ11 ρ22)+ iω b(ρ11 +2ρ12 +ρ22)

iω b−ω2 ρ22

(2.36)

Por tanto, en estos medios existe un sólo tipo de ondas rota
ionales que se propagan a través de

ambas fases. Al igual que en elastodinámi
a, son ondas transversales o de 
orte y su velo
idad

de propaga
ión se obtiene de:

c2
S =

ω2

k2
S

(2.37)

Esta velo
idad no es 
onstante y depende de la fre
uen
ia en el 
aso de sólidos poroelásti
os


on disipa
ión (b 6= 0). Tanto kS 
omo cS son números 
omplejos en el 
aso más general. Así,

el número de onda tendrá una expresión del tipo:

kS = kr
S + iki

S (2.38)

La solu
ión de la expresión (2.35) sólo tiene signi�
ado físi
o para kS 
uando la parte real e

imaginaria de (2.38) toman valores positivos (kr
S ≥ 0 y ki

S ≥ 0). Teniendo en 
uenta (2.38), el

ve
tor rota
ión del sólido (2.31a) puede es
ribirse 
omo:

w = Dw e−ki
S x3 ei(ωt−kr

S x3)
(2.39)
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En esta expresión, el primer término exponen
ial (ki
S ≥ 0) amortigua la amplitud de la onda en

sentido 
re
iente 
on la 
oordenada x3. El segundo término representa un armóni
o espa
io�

temporal que indi
a que la onda se propaga en dire

ión positiva del eje x3 (kr
S ≥ 0).

Si se 
onsidera que la fase �uida que o
upa los intersti
ios tiene vis
osidad nula (b = 0), las
expresiones (2.32) y (2.37) pueden es
ribirse 
omo:

Ω =−ρ12

ρ22

w (2.40)

c2
S =

µ

ρ11

(
1− ρ2

12

ρ11 ρ22

)
(2.41)

En este supuesto, teniendo en 
uenta que ρ12 ≤ 0, el �uido y el sólido rotan en fase y la

perturba
ión se propaga 
on velo
idad 
onstante sin amortiguamiento (cS ∈ ℜ). Cuando la

densidad añadida es nula (ρ12 = 0) el movimiento del �uido es irrota
ional a nivel ma
ros
ópi
o

y la velo
idad de propaga
ión de las ondas de 
orte será:

c2
S =

µ

ρ11

=
µ

(1−φ)ρs

(2.42)

lo que signi�
a que, a efe
tos de la onda de 
orte, el sólido poroelásti
o se 
omporta 
omo un

medio vis
oelásti
o 
uyas propiedades son las 
orrespondientes al esqueleto sólido drenado, es

de
ir, la onda de 
orte se propaga ex
lusivamente a través de la matriz sólida.

Por el 
ontrario, si el medio es altamente disipativo (b → ∞), las expresiones (2.32) y (2.37) se
pueden es
ribir respe
tivamente 
omo:

Ω = w (2.43)

c2
S =

µ

ρ11 +2ρ12 +ρ22

=
µ

(1−φ)ρs +φ ρf

=
µ

ρh

(2.44)

La rota
ión es igual en ambas fases, siendo la densidad efe
tiva que determina la velo
idad de

propaga
ión, la densidad promedio del material poroelásti
o homogéneo (ρh).

La 
omponente irrota
ional se estudia 
onsiderando la existen
ia de una onda plana armóni
a

de fre
uen
ia angular ω que se propaga en sentido positivo del eje x3 a través del sólido y �uido,


on igual velo
idad de propaga
ión en ambas fases. El desplazamiento en esa dire

ión de las

partí
ulas del esqueleto sólido (u3) y de las 
orrespondientes al �uido intersti
ial (U3) pueden
expresarse 
omo:

u3 = Du ei(ωt−kPx3)
(2.45a)

U3 = DU ei(ωt−kPx3)
(2.45b)

siendo kP el número de onda y (Du, DU) las amplitudes del desplazamiento del sólido y �ui-

do respe
tivamente. Sustituyendo (2.45) en las e
ua
iones (2.29), se obtiene un sistema de

e
ua
iones 
on solu
ión distinta de la trivial para valores espe
í�
os de kP (i.e., autovalores del

problema). La e
ua
ión 
ara
terísti
a de este sistema se expresa 
omo sigue:
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A(k2
P)

2 −Bk2
P +C = 0 (2.46)

siendo A, B y C 
onstantes 
omplejas en el 
aso general 
omo puede verse:

A =λ +2µ (2.47a)

B =ρ ω2 +
(ω2 ρ22 − iω b)

R
(λ +2µ)

−
[

Q

R
(ω2 ρ22 − iω b)− (ω2 ρ12 + iω b)

](
Q

R
− ω2 ρ12 + iω b

ω2 ρ22 − iω b

)
(2.47b)

C =ρ ω2 (ω
2 ρ22 − iω b)

R
(2.47
)

Existen, por tanto, dos raí
es 
omplejas de la forma:

k2
P1 =

B−
√

B2 −4AC

2A
; k2

P2 =
B+

√
B2 −4AC

2A
(2.48)

Estas dos raí
es representan los números de onda (al 
uadrado) de dos ondas irrota
ionales o

longitudinales 
ompatibles 
on el problema planteado. Las velo
idades de propaga
ión serán:

c2
P1 =

ω2

k2
P1

; c2
P2 =

ω2

k2
P2

(2.49)

A la onda de mayor velo
idad de propaga
ión (cP1), que 
orresponde a la menor de las raí
es

en módulo, se la denomina onda de primer tipo (onda P rápida u onda P larga). La más lenta

(cP2) se denomina onda de segundo tipo (onda P 
orta). Ambas velo
idades de propaga
ión son

números 
omplejos que dependen de la fre
uen
ia en el 
aso general. Este 
ará
ter 
omplejo,


omo en el 
aso anterior, impli
a que ambas ondas se amortiguan en sentido 
re
iente del eje x3.

Notar que este amortiguamiento es mu
ho mayor en la onda P2, la 
ual se atenúa rápidamente

y sólo puede dete
tarse en las proximidades de la perturba
ión. Si la disipa
ión vis
osa es nula

(b = 0), ambos valores de la velo
idad son 
onstantes reales positivas. En este 
aso, ambas


omponentes se propagan sin amortiguarse.

Para 
ada una de las raí
es (autovalores) de la e
ua
ión 
ara
terísti
a (2.46) pueden obtenerse

los valores de Du y DU (autove
tores). El 
ál
ulo de autove
tores (amplitudes de las ondas

en la fase sólida y en la fase �uida) 
orrespondientes a 
ada uno de los autovalores anteriores


ondu
e en el 
aso de la onda P1 a la obten
ión de DP1
u y DP1

U , de igual signo, lo que signi�
a

que la fase sólida y el �uido vibran en fase para las ondas de primer tipo. Por el 
ontrario, para

las ondas de tipo P2, las amplitudes de ambas fases DP2
u y DP2

U tienen signos 
ontrarios (las

partí
ulas de sólido y �uido vibran en 
ontra�fase). Para más detalles sobre la propaga
ión de

ondas en medios poroelásti
os ver p.e. [Bio56a, Bio56b, Azn02℄.

2.4 Formula
ión integral y solu
ión fundamental armóni
a

En los apartados anteriores se ha des
rito el 
omportamiento de 
uerpos elásti
os o poroelásti-


os, homogéneos, isótropos y lineales por medio de las e
ua
iones de gobierno. La transforma-


ión de estas e
ua
iones diferen
iales en expresiones integrales 
ondu
e a la formula
ión integral
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a

del problema. Estas expresiones integrales se extienden al 
ontorno del dominio en estudio y

permiten rela
ionar las variables fundamentales en puntos internos del dominio Ω 
on estas

mismas y sus derivadas en el 
ontorno Γ. Para resolver estas expresiones integrales es ne
esario

la de�ni
ión de un estado virtual de referen
ia, llamado solu
ión fundamental, que satisfaga las

e
ua
iones de Navier.

Se presenta primero la formula
ión integral para la poroelastodinámi
a armóni
a y luego para la

elastodinámi
a armóni
a 
omo un 
aso parti
ular de la anterior. A 
ontinua
ión se presentan las

expresiones de la solu
ión fundamental en el 
aso armóni
o para la elastodinámi
a y la poroelas-

todinámi
a. El pro
edimiento de obten
ión de la formula
ión integral y también de la solu
ión

fundamental 
orrespondiente se expone de manera somera ya que se sale de los objetivos de

este trabajo, pudiendo 
onsultarse de manera más profunda en [Dom92℄ y/o [Azn02℄.

2.4.1 Formula
ión integral en poroelastodinámi
a armóni
a

El punto de partida para la formula
ión integral apare
ió de forma 
asi simultánea 
on los

trabajos de Cheng et al. [CBB91℄ y Domínguez [Dom91, Dom92℄ para problemas armóni
os

bidimensionales. La diferen
ia más obvia entre ambos es el tipo de variables derivadas que

utilizan y el pro
edimiento de obten
ión de la formula
ión integral. Por un lado, en la formula
ión

propuesta por Cheng et al. la e
ua
ión integral se deriva del teorema de re
ipro
idad análogo al

primer teorema de Betti para elasti
idad. Por otra parte, Domínguez parte de una expresión que

anula la integral del residuo ponderado de las e
ua
iones de equilibrio en ambas fases. Ambos

planteamientos se 
onvierten en formula
iones en el 
ontorno mediante té
ni
as de integra
ión

por partes y la apli
a
ión del teorema de la divergen
ia.

La formula
ión integral que aquí se presenta es posible obtenerla desde ambos planteamientos.

En el 
aso de un medio poroelásti
o, la formula
ión integral viene dada por el siguiente 
onjunto

de 
uatro e
ua
iones:

uk
j +

∫

Γ
t∗ji ui dΓ+

∫

Γ
U∗

n j τ dΓ =

∫

Γ
u∗ji ti dΓ−

∫

Γ
τ∗

j Un dΓ (2.50a)

−J τk +
∫

Γ
t∗oi ui dΓ−

∫

Γ
(U∗

no − J X
′∗
i ni)τ dΓ =

∫

Γ
u∗oi ti dΓ−

∫

Γ
τ∗

o Un dΓ (2.50b)

siendo

J =
1

iω b−ω2ρ22

(2.51)

La expresión (2.50a) es un grupo de tres e
ua
iones el 
ual rela
iona el desplazamiento uk
j

en la dire

ión j ( j = 1, 2, 3) de un punto interno k del dominio Ω 
on los desplazamientos

ui,Un, las tensiones ti y la tensión equivalente en el �uido τ de los puntos del 
ontorno Γ. Un

es el desplazamiento normal al 
ontorno del �uido. u∗ji y t∗ji representan respe
tivamente los

desplazamientos y las tensiones de la matriz sólida en la dire

ión i debidos a la 
arga puntual

apli
ada según la dire

ión j a
tuando sobre di
ha matriz sólida. Para la misma 
arga, τ∗
j y U∗

n j

son respe
tivamente la tensión equivalente y el desplazamiento normal al 
ontorno de la fase

�uida. Estos términos 
orresponden a la solu
ión fundamental.

La expresión (2.50b) es la representa
ión integral de la tensión equivalente en el �uido τk
en un

punto interno k del dominio Ω. Esta e
ua
ión rela
iona di
ha variable 
on los desplazamientos
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ui,Un, las tensiones ti y la tensión equivalente en el �uido τ de los puntos del 
ontorno Γ. u∗oi y t∗oi

son respe
tivamente la 
omponente i de los desplazamientos y tensiones en el esqueleto sólido

provo
ados por la fuente puntual en el �uido (el subíndi
e 'o' se 
orresponde 
on j = 4 e indi
a

que la 
arga está apli
ada en la fase �uida). τ∗
o y U∗

no son la respuesta en tensión equivalente

y el desplazamiento normal del propio �uido para la misma soli
ita
ión. Estos 
uatro términos


orresponden a la solu
ión fundamental en el 
aso en que la 
arga esté apli
ada en la fase �uida

del medio.

2.4.2 Formula
ión integral en elastodinámi
a armóni
a

En este 
aso, el teorema de re
ipro
idad fue estable
ido por Gra� [Gra46℄ en el dominio del

tiempo y generalizado por Wheeler y Sternberg [WS68℄ a dominios no a
otados. En el dominio

de la fre
uen
ia, la representa
ión integral del 
ampo de desplazamientos puede realizarse a

partir de la expresión (2.50a) 
onsiderando un medio poroso 
ompletamente drenado (τ y

τ∗
nulas). Suponiendo nulas las fuerzas de volumen, la representa
ión integral del 
ampo de

desplazamientos en puntos k internos de un dominio Ω a
otado 
on 
ontorno Γ viene dado por:

uk
j +
∫

Γ
t∗ji ui dΓ =

∫

Γ
u∗ji ti dΓ (2.52)

donde uk
j es el desplazamiento en la dire

ión j ( j = 1, 2, 3) del punto k. ui, ti son respe
-

tivamente las in
ógnitas en desplazamientos y tensiones en dire

ión i del problema que se

pretende resolver. u∗ji, t∗ji son respe
tivamente los desplazamientos y las tensiones en dire

ión

i de la solu
ión fundamental que veri�
a la e
ua
ión de Navier:

µ∇2u∗i j +(λ +µ)∇e∗j,i −ρ ω2u∗ji +δ (x−xk)δ ji = 0 (2.53)

2.4.3 Solu
ión fundamental armóni
a en elasti
idad

La respuesta en desplazamientos y tensiones de un medio in�nito, isótropo, homogéneo, elásti
o

y lineal ante una 
arga apli
ada en un punto del mismo es un problema 
lási
o resuelto por

Sto
kes [Sto49℄ en el dominio del tiempo, por Cruse y Rizzo [CR68℄ en el dominio transformado

de Lapla
e y algunos años antes por Kupradze [Kup63℄ para problemas armóni
os.

Para un punto x a una distan
ia r del punto de apli
a
ión ι , el desplazamiento en dire

ión k

para una 
arga apli
ada en dire

ión l viene dado por:

u∗lk(x, ι ,ω) =
1

4πµ
[ψ δlk − χ r,l r,k] (2.54)

donde

ψ =
2

∑
m=1

[
1−
(

z1

z2

)2

δm1

](
1

z2
m r2

− 1

zm r
+δm2

)
Em (2.55a)

χ =
2

∑
m=1

[
1−
(

z1

z2

)2

δm1

](
3

z2
m r2

− 3

zm r
+1

)
Em (2.55b)
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siendo r = |x− ι |, Em = 1
r

e−ikm r
, z1 =−ikP y z2 =−ikS.

A partir de estas expresiones y ha
iendo uso de la ley de 
omportamiento del material, las

tensiones para una super�
ie de normal n serán:

t∗lk(x, ι ,ω) =
1

4π

[
∂ r

∂ n
(Aδlk +Br,l r,k)+ (Ar,k nl +C r,l nk)

]
(2.56)

donde

A =
dψ

dr
− χ

r
(2.57a)

B = 2

(
2

χ

r
− dχ

dr

)
(2.57b)

C =
λ

µ

(
dψ

dr
− dχ

r
−2

χ

r

)
−2

χ

r
(2.57
)

Hay que resaltar que esta solu
ión fundamental presenta una singularidad 
uando ω r → 0, lo

que ha
e ne
esario un tratamiento espe
ial de las integrales de di
has fun
iones alrededor del

punto de apli
a
ión de la 
arga (ver, p.e., [Dom93, Azn02℄).

2.4.4 Solu
ión fundamental armóni
a en poroelasti
idad

En este 
aso, la fuerza puntual puede estar apli
ada tanto en la matriz sólida 
omo en la fase

�uida. Por tanto, la solu
ión fundamental es obtenida tanto en términos de las variables en la

fase sólida y �uida.

De esta manera, si la fuerza está apli
ada sobre el esqueleto sólido en la dire

ión l, la respuesta

en desplazamientos de la misma en dire

ión k es:

u∗lk(x, ι ,ω) =
1

4πµ
[ψ̃ δlk − χ̃ r,l r,k] (2.58)

Para la misma fuerza apli
ada en la matriz sólida en dire

ión l, la respuesta en tensiones

equivalentes de la fase �uida es:

τ∗
l (x, ι ,ω) =

iω η

4π
φ̃ r,l (2.59)

Por otro lado, si se 
onsidera la 
arga apli
ada en la fase �uida, la respuesta en desplazamientos

de la matriz sólida en dire

ión k es:

u∗ok(x, ι ,ω) =
γ

4π
φ̃ r,k (2.60)

y la tensión equivalente en el �uido será:

τ∗
o (x, ι ,ω) =

1

4π
κ̃ (2.61)
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donde

ψ̃ =
3

∑
m=1

[
(−1)m µ

(λ +2µ)z21

(
iω

K
− z2

m

)
(δm1 +δm2)+δm3

](
1

z2
m r2

− 1

zm r
+δm3

)
Em

χ̃ =
3

∑
m=1

[
(−1)m µ

(λ +2µ)z21

(
iω

K
− z2

m

)
(δm1 +δm2)+δm3

](
3

z2
m r2

− 3

zm r
+1

)
Em

φ̃ =
2

∑
m=1

(−1)m+1

(λ +2µ)z21

zm

(
1

zm r
−1

)
Em (2.62)

κ̃ =
2

∑
m=1

(−1)m+1

z21

(
µ

λ +2µ
z2

3 − z2
m

)
Em

siendo r = |x− ι|, Em = 1
r

e−ikm r
, zm =−ikm (m = 1, 2, 3) y z21 = z2

2 − z2
1.

Una vez 
ono
ida la respuesta en desplazamientos de la fase sólida y tensiones equivalentes

en la fase �uida, pueden obtenerse las 
omponentes del ve
tor tensión en el esqueleto y el

desplazamiento normal del �uido aso
iados a una super�
ie 
on normal exterior n.

Para el ve
tor tensión se ha
e uso de la ley de 
omportamiento del material poroelásti
o. Por

tanto, si la 
arga está apli
ada en dire

ión l sobre el esqueleto sólido, la 
omponente del ve
tor

tensión sobre el mismo en dire

ión k es:

t∗lk(x, ι ,ω) =
1

4π

[
∂ r

∂ n
(Ãδlk + B̃r,l r,k)+ (Ãr,k nl +C̃ r,l nk)

]
(2.63)

Si la fuente puntual se apli
a sobre el �uido, la 
omponente k del ve
tor tensión en el esqueleto

es:

t∗ok(x, ι ,ω) =
γ

4π

(
∂ r

∂ n
F̃ r,k + G̃nk

)
(2.64)

La solu
ión fundamental en términos del desplazamiento normal del �uido se determina a partir

de la expresión (2.19) una vez 
ono
idos el desplazamiento del sólido y la tensión equivalente.

Ahora, si la 
arga está apli
ada sobre el esqueleto según l, el desplazamiento normal del �uido

es:

U∗
nl(x, ι ,ω) =

1

4π

(
∂ r

∂ n
D̃ r,l + Ẽ nl

)
(2.65)

y si la 
arga a
túa sobre la fase �uida:

U∗
no − J X ′

l nl =
1

4π

∂ r

∂ n
H̃ (2.66)

Las expresiones Ã, B̃, C̃, D̃, Ẽ, F̃, G̃ y H̃, en fun
ión de ψ̃ , χ̃ , φ̃ y κ̃ se es
riben a 
ontinua
ión:
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Ã =
dψ̃

dr
− χ̃

r
(2.67a)

B̃ = 2

(
2

χ̃

r
− dχ̃

dr

)
(2.67b)

C̃ =
λ

µ

(
dψ̃

dr
− dχ̃

d r
−2

χ̃

r

)
−2

χ̃

r
+

Q

R
iω η φ̃ (2.67
)

D̃ = iω η J

(
dφ̃

dr
− φ̃

r

)
− Z

µ
χ̃ (2.67d)

Ẽ = iω η J
φ̃

r
+

Z

µ
ψ̃ (2.67e)

F̃ = 2µ

(
dφ̃

dr
− φ̃

r

)
(2.67f)

G̃ = λ

(
dφ̃

dr
+2

φ̃

r

)
−2µ

φ̃

r
+

Q

Rγ
κ̃ (2.67g)

H̃ = J
dκ̃

dr
+Z γ φ̃ (2.67h)

2.4.5 Formula
ión integral en el 
ontorno

La formula
ión integral expuesta en los apartados 2.4.1 y 2.4.2 anteriores permite, a través

de (2.50) para medios poroelásti
os y (2.52) para medios elásti
os, determinar las variables

fundamentales en puntos internos de Ω en fun
ión de los valores que adoptan éstas y sus

derivadas en puntos del 
ontorno Γ. La apli
a
ión del MEC para la resolu
ión numéri
a de

problemas en el que están involu
rados estos tipos de medios requiere que di
ha formula
ión

integral implique úni
amente variables en el 
ontorno. Por tanto se ha
e ne
esario que los

puntos de 
olo
a
ión de la 
arga estén situados en el 
ontorno. Existen, sin embargo, algunas

di�
ultades aso
iadas a esta opera
ión teniendo en 
uenta que las expresiones de los integrandos

son singulares en el punto de 
olo
a
ión.

La manera de solventar esta singularidad al evaluar estas integrales en el 
ontorno 
onsiste

en re
re
er arti�
ialmente el dominio en el entorno del punto de 
olo
a
ión ι a través de una

semiesfera Γε de radio ε → 0. La �gura 2.3 muestra di
ha semiesfera, 
uyo 
entro es el punto

de 
olo
a
ión ι . Por tanto así, 
ada una de las integrales de 
ontorno pueden des
omponerse

en otras dos extendidas respe
tivamente a los 
ontornos Γ−Γε y Γε .

Apli
ando este pro
eso de subdivisión a la expresión (2.52), para el 
aso de regiones vis
oelás-

ti
as, puede es
ribirse ésta 
omo:

uι
l +

∫

Γ−Γε

t∗lk uk dΓ+

∫

Γε

t∗lk uk dΓ =

∫

Γ−Γε

u∗lk tk dΓ+

∫

Γε

u∗lk tk dΓ (2.68)

Para que esta igualdad implique sólo variables en el 
ontorno, será ne
esario estudiar el 
om-

portamiento de estas integrales 
uando ε → 0. Así, las integrales sobre Γ−Γε no presentan

problemas ya que el 
ontorno sobre el que se extienden no in
luye la singularidad y en el límite

han de entenderse en el sentido del Valor Prin
ipal de Cau
hy (C.P.V.) (ver, p.e., [DG98℄).
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ε

ι

n Γε

Γ−Γε

Figura 2.3: Igualdad integral en el 
ontorno. Pro
edimiento de extra

ión de la singularidad.

lı́m
ε→0

∫

Γ−Γε

t∗lk uk dΓ = C.P.V.

∫

Γ
t∗lk uk dΓ (2.69a)

lı́m
ε→0

∫

Γ−Γε

u∗lk tk dΓ = C.P.V.

∫

Γ
u∗lk tk dΓ (2.69b)

Por otra parte, las integrales extendidas al 
ontorno diferen
ial Γε están perfe
tamente de�nidas

en el límite. Teniendo en 
uenta que u∗lk ∼O(1/ε), t∗lk ∼O(1/ε2) y dΓ∼O(ε2), se puede es
ribir:

lı́m
ε→0

∫

Γε

u∗lk tk dΓ = 0 (2.70a)

uι
l + lı́m

ε→0

∫

Γε

t∗lk uk dΓ = cι
lk uι

k (2.70b)

donde cι
lk es el término libre, idénti
o al que apare
e en elastoestáti
a, 
uyo valor depende de la

geometría del 
ontorno en el punto ι y del 
oe�
iente de Poisson del medio (ver, p.e. [Har81℄).

Si el 
ontorno es suave en el punto de 
olo
a
ión (super�
ie normal 
ontinua) cι
lk = 1/2δlk .

Teniendo en 
uenta las e
ua
iones (2.69) y (2.70), la e
ua
ión (2.68) puede es
ribirse 
omo:

cι
lk uι

k +
∫

Γ
t∗lk uk dΓ =

∫

Γ
u∗lk tk dΓ (2.71)

donde todas las integrales en el 
ontorno han de entenderse en el sentido del Valor Prin
ipal

de Cau
hy (por 
omodidad en la nota
ión se omite 'C.P.V.' en adelante). Re
ogiendo de forma


onjunta la 
olo
a
ión en las tres dire

iones, la expresión (2.71) puede es
ribirse en nota
ión

matri
ial más 
ompa
ta de la forma siguiente:

cι uι +

∫

Γ
p∗udΓ =

∫

Γ
u∗pdΓ (2.72)

donde u y p son respe
tivamente los ve
tores de los desplazamientos y las tensiones:
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2.5 El método de los elementos de 
ontorno

u =




u1

u2

u3


 ; p =




t1
t2
t3




(2.73)

u

∗
y p

∗
son los tensores 3×3 de la solu
ión fundamental:

u∗ =




u∗11 u∗12 u∗13

u∗21 u∗22 u∗23

u∗31 u∗32 u∗33


 ; p∗ =




t∗11 t∗12 t∗13

t∗21 t∗22 t∗23

t∗31 t∗32 t∗33




(2.74)

y cι
es el tensor 3× 3 del término libre elastoestáti
o en el punto de 
olo
a
ión (cι = I en

puntos internos, siendo I la matriz unitaria diagonal 3×3)

cι =




cι
11 cι

12 cι
13

cι
21 cι

22 cι
23

cι
31 cι

32 cι
33




(2.75)

En el 
aso de medios poroelásti
os, llevando 2.50 al 
ontorno y realizando el estudio en el límite,

se obtiene una e
ua
ión matri
ial del tipo (2.72), donde ahora:

u =




u1

u2

u3

τ


 ; p =




t1
t2
t3
Un


 (2.76)

u∗ =




u∗11 u∗12 u∗13 −τ∗
1

u∗21 u∗22 u∗23 −τ∗
2

u∗31 u∗32 u∗33 −τ∗
3

u∗o1 u∗o2 u∗o3 −τ∗
o


 ; p∗ =




t∗11 t∗12 t∗13 −U∗
n1

t∗21 t∗22 t∗23 −U∗
n2

t∗31 t∗32 t∗33 −U∗
n3

t∗o1 t∗o2 t∗o3 −Û∗
no


 (2.77)

siendo Û∗
no =U∗

no − J X ′
i ni. Ahora, el tensor 
orrespondiente al término libre se es
ribe 
omo:

cι =




cι
11 cι

12 cι
13 0

cι
21 cι

22 cι
23 0

cι
31 cι

32 cι
33 0

0 0 0 J cι


 (2.78)

Este tensor cι
dependerá de la geometría del 
ontorno en el punto ι , del 
oe�
iente de Poisson

ν del material drenado y del valor de J.

2.5 El método de los elementos de 
ontorno

La formula
ión integral en el 
ontorno para 
ada uno de los medios junto 
on las 
ondi
iones

de 
ontorno y de 
onta
to en las interfases entre regiones permiten abordar la solu
ión para el


ampo de desplazamientos y tensiones. Salvo para problemas muy sen
illos, la solu
ión analíti
a

del problema es inabordable. Por esta razón y utilizando el método de los elementos de 
ontorno,

se lleva a 
abo un pro
eso de dis
retiza
ión de estas e
ua
iones 
on el �n de obtener un sistema
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algebrai
o de e
ua
iones del 
ual se obtendrá la solu
ión numéri
a del problema en los puntos

del 
ontorno.

2.5.1 Dis
retiza
ión del 
ontorno

El planteamiento numéri
o de la e
ua
ión (2.72) requiere la dis
retiza
ión del 
ontorno Γ en

un número Ne de elementos Γ j, de manera que:

Γ ≃
Ne⋃

j=1

Γ j (2.79)

Cada elemento j se de�ne por un número de nodos N
j

n , de manera que los 
ampos de despla-

zamientos u y tensiones p sobre el mismo pueden interpolarse a través de los valores nodales

ha
iendo uso de un grupo de fun
iones de forma, las 
uales serán de�nidas más adelante. Así,

sobre un elemento genéri
o j se pueden expresar 
omo:

u(ξ ) = Φ(ξ )u j ; p(ξ ) = Φ(ξ )p j
(2.80)

siendo u j
y p j

los ve
tores que 
ontienen respe
tivamente los desplazamientos y las tensiones

nodales. Φ(ξ ) es una matriz que 
ontiene las fun
iones de forma del elemento, donde ξ repre-

senta el 
onjunto de las 
oordenadas naturales usadas para de�nir un punto 
ualquiera sobre

el mismo. Las dimensiones de los ve
tores u j
y p j

pueden ser 3N
j

n ×1 en el 
aso de dominios

vis
oelásti
os o bien 4N
j

n × 1 en el 
aso de los poroelásti
os. De la misma forma, la matriz

Φ(ξ ) puede ser de dimensiones 3×3N
j

n en el 
aso vis
oelásti
o

Φ(ξ ) =




φ1 0 0 φ2 0 0 · · · φ
N

j
n

0 0

0 φ1 0 0 φ2 0 · · · 0 φ
N

j
n

0

0 0 φ1 0 0 φ2 · · · 0 0 φ
N

j
n


 (2.81)

o 4×4N
j

n en el 
aso de dominios poroelásti
os

Φ(ξ ) =




φ1 0 0 0 φ2 0 0 0 · · · φ
N

j
n

0 0 0

0 φ1 0 0 0 φ2 0 0 · · · 0 φ
N

j
n

0 0

0 0 φ1 0 0 0 φ2 0 · · · 0 0 φ
N

j
n

0

0 0 0 φ1 0 0 0 φ2 · · · 0 0 0 φ
N

j
n


 (2.82)

La geometría del elemento se aproximará usando las mismas fun
iones de forma (elemento

isoparamétri
o):

x(ξ ) = Φ(ξ )x j
(2.83)

donde x j
es un ve
tor de dimensiones 3N

j
n × 1 que 
ontiene las 
oordenadas de los nodos

que de�nen el elemento j. Aunque el tratamiento numéri
o es extrapolable a 
ualquier tipo de

elemento, en el modelo que se presenta se han utilizado elementos 
uadráti
os 
uadriláteros

y triangulares de nueve y seis nodos respe
tivamente [Dom93℄. En la tabla 2.1 se presenta
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ontorno

Tabla 2.1: Tipología de los elementos 
uadráti
os triangulares y 
uadriláteros

φ1 = ξ1(2ξ1 −1) ; φ4 = 4ξ1ξ2

φ2 = ξ2(2ξ2 −1) ; φ5 = 4ξ2ξ3

φ3 = ξ3(2ξ3 −1) ; φ6 = 4ξ1ξ3

ξ3 = 1−ξ1 −ξ2 ; 0 ≤ ξ1 ≤ 1 ; 0 ≤ ξ2 ≤ 1

φ1 =
1
4
ξ1(ξ1 −1)ξ2(ξ2 −1) ; φ2 =

1
2
(1−ξ 2

1 )ξ2(ξ2 −1)

φ3 =
1
4
ξ1(ξ1 +1)ξ2(ξ2 −1) ; φ4 =

1
2
ξ1(1+ξ1)(1−ξ 2

2 )

φ5 =
1
4
ξ1(ξ1 +1)ξ2(ξ2 +1) ; φ6 =

1
2
(1−ξ 2

1 )ξ2(ξ2 +1)

φ7 =
1
4
ξ1(ξ1 −1)ξ2(ξ2 +1) ; φ8 =

1
2
ξ1(ξ1 −1)(1−ξ 2

2 )

φ9 = (1−ξ 2
1 )(1−ξ 2

2 )

−1 ≤ ξ1 ≤ 1 ; −1 ≤ ξ2 ≤ 1
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la tipología de los elementos junto 
on sus fun
iones de forma es
ritas en términos de las


oordenadas naturales ξ1 y ξ2.

A
larar que la geometría aproximada por la e
ua
ión (2.83) no es, en general, 
ompletamente


oin
idente 
on el 
ontorno original 
omo expresa la expresión (2.79). El error de aproxima
ión

depende de la 
omplejidad de la geometría, la dis
retiza
ión realizada y las fun
iones de forma.

Sin embargo, esta 
lase de errores son inherentes a la aproxima
ión en la 
ual el método de

elementos de 
ontorno, y mu
hos otros métodos, se basan, y en 
onse
uen
ia no los invalidan.

Una vez que los 
ontornos han sido dis
retizados y teniendo en 
uenta que u j
y p j

son ve
tores


onstantes dentro del elemento Γ j, la sustitu
ión de (2.80) en (2.72) permite es
ribir:

cι uι +
Ne

∑
j=1

{∫

Γ j

p∗ΦdΓ

}
u j =

Ne

∑
j=1

{∫

Γ j

u∗ΦdΓ

}
p j

(2.84)

lo 
ual 
onstituye un 
onjunto de tres e
ua
iones algebrai
as 
uyos 
oe�
ientes dependen del

valor de la solu
ión fundamental en los nodos del 
ontorno 
uando la 
arga unidad a
túa en

el punto de apli
a
ión. La expresión (2.84) puede ser es
rita en forma matri
ial de la siguiente

manera:

cι uι +
Nn

∑
m=1

Ĥιmum =
Nn

∑
m=1

Gιmpm
(2.85)

donde ahora los sumatorios se extienden a todos los nodos de la dis
retiza
ión. Los ve
tores um

y pm
representan las 
omponentes nodales en desplazamientos y tensiones en el nodo m. Las

matri
es Ĥιm
y Gιm

representan la respuesta del nodo m debida a una 
arga armóni
a unitaria

en el punto de 
olo
a
ión ι , y se de�nen 
omo:

Ĥιm = ∑
em

∫

Γem

p∗φk dΓ (2.86)

Gιm = ∑
em

∫

Γem

u∗φk dΓ (2.87)

donde los sumatorios se extienden a todos los elementos em a los 
uales pertene
e el nodo m, y

siendo φk la fun
ión de forma 
orrespondiente al nodo m 
uando pertene
e al elemento Γem
. El

punto de 
olo
a
ión ι normalmente 
oin
idirá 
on un determinado nodo m de la dis
retiza
ión,

en ese 
aso, llamando a:

Hιm =

{
Ĥιm

, si ι 6= m

cι + Ĥιm
, si ι = m

(2.88)

la e
ua
ión (2.85) puede ser es
rita 
omo:

Nn

∑
m=1

Hιmum =
Nn

∑
m=1

Gιmpm
(2.89)

Finalmente, al apli
ar la 
arga en todos y 
ada uno de los nodos de la dis
retiza
ión se tiene

para 
ada uno de ellos un grupo de e
ua
iones 
omo (2.85), y todos 
onstituyen un sistema de

e
ua
iones independientes de la forma:
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Hū = Gp̄ (2.90)

donde ū y p̄ son los ve
tores que 
ontienen los valores nodales del problema. Las matri
es H

y G están 
ompuestas por las submatri
es Hιm
y Gιm

respe
tivamente. Una vez apli
adas las


ondi
iones de 
ontorno se puede reordenar (2.90) y es
ribir el sistema resultante:

Ax̄ = f̄ (2.91)

donde x̄ es el ve
tor de in
ógnitas (
omponentes de u o p según el 
aso) y f̄ el ve
tor de


oe�
ientes que se obtiene de multipli
ar las 
olumnas de H y G por las 
omponentes 
ono
idas

de u y p respe
tivamente.

2.5.2 Aspe
tos numéri
os

Como se ha visto hasta ahora, la resolu
ión de un problema mediante el método de elementos

de 
ontorno reside en varios aspe
tos, 
omo es la dis
retiza
ión de los 
ontornos, la evalua
ión

numéri
a de las submatri
es Hιm
y Gιm

, el montaje del sistema de e
ua
iones a través de la

matriz A y la obten
ión del ve
tor f̄ tras la apli
a
ión de las 
ondi
iones de 
ontorno y �nalmente

la resolu
ión del sistema lineal de e
ua
iones algebrai
as. Esto permite la obten
ión de una

solu
ión numéri
a aproximada en términos de los 
ampos de desplazamientos y tensiones en los

puntos del 
ontorno, lo que permite a su vez la obten
ión de los desplazamientos para 
ualquier

punto interno x ∈ Ω a través de las e
ua
iones (2.50) y (2.52) para medios poroelásti
os o

elásti
os respe
tivamente. En todo este pro
eso, uno de los aspe
tos 
lave del método es la


orre
ta evalua
ión numéri
a de las integrales de la manera más e�
iente.

En este sentido hay algunos aspe
tos a desta
ar. Cuando el punto de 
olo
a
ión no pertene-


e al elemento j sobre el que se integra, las integrales en las e
ua
iones (2.86) y (2.87) son

regulares en Γ j y, en 
onse
uen
ia, éstas pueden ser evaluadas ha
iendo uso de la 
uadratura

Gaussiana estándar sobre los elementos re
tangulares o triangulares según el 
aso (ver, p.e.,

[SS66, AS64℄). Aún así, 
uando la distan
ia r del punto de 
olo
a
ión al elemento sobre el

que se integra es relativamente pequeña, estas integrales están 
er
a de ser singulares debido

a que los integrandos son inversamente propor
ionales a r. En ese 
aso, se emplea un esque-

ma de regulariza
ión 
omo el presentado por Telles [Tel87℄. Por otro lado, 
uando el punto

de 
olo
a
ión pertene
e al elemento j sobre el que se integra, los nú
leos u∗
y p∗

presentan

singularidades del tipo O(1/r) y O(1/r2) respe
tivamente. Las singularidades de primer tipo,


ono
idas también 
omo singularidad débil, pueden ser tratadas mediante la té
ni
a de subdivi-

sión del elemento en 
onjun
ión 
on un pro
edimiento de transforma
ión de 
oordenadas para

ha
er el integrando regular (ver [LHM85, Tel87, ACD89℄). El segundo tipo de singularidades,

llamadas fuertemente singulares, son evaluadas siguiendo la té
ni
a propuesta por Chirino et

al. [CMA00℄, que 
ontinua la línea de los trabajos previos de Cruse et al. [Cru69℄ y Li et al.

[LHM85℄, en el sentido de identi�
ar los términos fuertemente singulares para regularizarlos

dire
tamente en 
oordenadas 
artesianas de forma 
onveniente y obtener así una integral de

super�
ie y otra de línea extendida al perímetro del elemento, ambas no singulares y evaluables

mediante 
uadratura estándar. Las singularidades se 
an
elan al in
orporar la 
ontribu
ión de

los elementos adya
entes.

La expli
a
ión de estos aspe
tos numéri
os está fuera de los objetivos de este trabajo. Una

exposi
ión más profunda de la evalua
ión numéri
a de las integrales y otros detalles numéri
os

del método de elementos de 
ontorno, 
omo es el problema de esquina, pueden ser revisados

en [Dom93, Azn02℄.
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2.6 Modelo a
oplado. Condi
iones de 
ontorno en las inter-

fases

La 
ompleta de�ni
ión del problema en el dominio de la fre
uen
ia requiere que las 
ondi
iones

de 
ontorno se 
umplan en términos de las variables fundamentales y sus derivadas. Las 
on-

di
iones ini
iales en el dominio del tiempo no son ne
esarias al haber eliminado la dependen
ia

temporal de las e
ua
iones de gobierno.

Para sólidos vis
oelásti
os, el ve
tor tensión tsi (x,ω) en el punto x del 
ontorno Γ 
on normal

exterior n se de�ne 
omo:

tsi (x,ω) = σ s

i j(x,ω)n j(x) x ∈ Γ (2.92)

donde σ s

i j es el tensor de tensiones en el punto x. En el 
aso de sólidos poroelásti
os, el ve
tor

tensión sobre el esqueleto tei (x,ω) en 
ualquier punto del 
ontorno es:

tei (x,ω) = τi j(x,ω)n j(x) x ∈ Γ (2.93)

siendo τi j el tensor de tensiones equivalentes sobre la matriz sólida. Por tanto, el ve
tor tensión

total sobre el material poroelásti
o homogéneo es

t
p

i (x,ω) = tei (x,ω)+ τ(x,ω)n j(x) x ∈ Γ (2.94)

Para ambos tipos de sólido, vis
oelásti
o y poroelásti
o, en una parte del 
ontorno (Γ1) son


ono
idas las variables fundamentales. En la parte 
omplementaria restante (Γ2) del 
ontorno
se 
ono
en las variables derivadas. Por tanto, para sólidos vis
oelásti
os

usi = us

i in Γ1 (2.95a)

tsi = t
s

i in Γ2 (2.95b)

siendo Γ1 ∪Γ2 = Γ y Γ1 ∩Γ2 =∅.

Tratándose de sólidos poroelásti
os, las variables fundamentales son el ve
tor desplazamiento

del esqueleto sólido ue

y la tensión equivalente en el �uido τ . Las variables derivadas son el ve
tor
de tensiones sobre el esqueleto pe

y el desplazamiento normal al 
ontorno del �uido Un. Para

este tipo de sólidos, es interesante distinguir entre 
ontornos permeables o impermeables. Estas

dos 
onsidera
iones representan los dos 
asos extremos de la teoría presentaba por Deresiewi
z y

Skalak [DS63℄ para representar la realidad físi
a del problema. Si se 
onsidera 
aso permeable, la

presión de poro es nula (τ = 0). En este 
aso puede ser 
ono
ido el ve
tor desplazamiento de la

fase sólida (uei = ūei ) o la tensión equivalente sobre ella (tei = t̄ei ). Si el 
ontorno es impermeable,

son iguales las 
omponentes normales del desplazamiento en ambas fases (uen =Un). Esto último

puede ser 
ono
ido (uen = Un = ūn) y las in
ógnitas serás la tensiones equivalentes en ambas

fases o bien será 
ono
ida la tensión total sobre el 
ontorno (tpi = t̄
p

i ) y el desplazamiento

in
ógnita.

El análisis dinámi
o de modelos donde 
oexisten varios tipos de medios debe tener en 
uenta el

efe
to de intera

ión entre ellos a través de las interfases o 
ontornos 
omunes a dos regiones.

Esta intera

ión se estable
e matemáti
amente a través de las e
ua
iones de equilibrio de
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2.7 E
ua
iones de 
ampo in
idente en el semiespa
io

tensiones y 
ompatibilidad de desplazamientos de ambos medios en todos los puntos de estos


ontornos. En rela
ión a los problemas que van a ser tratados en este trabajo y dependiendo

de la naturaleza de los medios que intera
túan, hablaremos de dos tipos de interfase posibles:

vis
oelásti
o�vis
oelásti
o y vis
oelásti
o�poroelásti
o. En este último 
aso, la 
ondi
ión de


onta
to en la interfase puede ser 
onsiderado 
omo permeable o impermeable.

Interfase vis
oelásti
o�vis
oelásti
o: siendo S1 y S2 dos sólidos vis
oelásti
os, las e
ua
iones de

equilibrio y 
ompatibilidad en este 
aso son inmediatas. Así:

Condi
ión de equilibrio:pS1 +pS2 = 0 (2.96a)

Compatibilidad 
inemáti
a:uS1 −uS2 = 0 (2.96b)

Interfase vis
oelásti
o�poroelásti
o: en este 
aso, y teniendo en 
uenta que el medio poroso

puede ser impermeable o permeable, la 
ondi
ión de equilibrio entre el ve
tor de tensiones ps

del medio vis
oelásti
o y el ve
tor de tensiones pp (pp = pe+τ n) del medio poroelásti
o puede

ser expresada 
omo:

Condi
ión de equilibrio (impermeable) :ps+pe+ τ n = 0 (2.97a)

Condi
ión de equilibrio (permeable, τ = 0) :ps+pe = 0 (2.97b)

La 
ondi
ión de 
ompatibilidad se 
umple 
uando los ve
tores de desplazamiento del esqueleto

del medio poroelásti
o ue

y del medio elásti
o us

son iguales:

ue = us

(2.98)

En el 
aso de que el medio poroso sea impermeable, también se 
umple que el desplazamiento

normal de los puntos del esqueleto y el desplazamiento normal a la interfase del �uido son

iguales

ue

n = Un (2.99)

2.7 E
ua
iones de 
ampo in
idente en el semiespa
io

En este apartado se estable
en las expresiones que de�nen los 
ampos de desplazamientos

y tensiones produ
idos por la in
iden
ia de ondas planas a través del semiespa
io elásti
o o

poroelásti
o.

En el 
aso elásti
o se estudiará el 
omportamiento del mismo 
uando a través del semiespa
io se

propagan ondas de tipo SH, SV, P y de Rayleigh in
idiendo 
on un ángulo totalmente genéri
o.

Primero se tratará el 
aso bidimensional 
on un ángulo de in
iden
ia 
ualquiera para después

extender las expresiones bidimensionales al problema en tres dimensiones.

Cuando se trata de un semiespa
io poroelásti
o, el 
ampo in
idente se presenta sólo para ondas

planas transversales S y longitudinales P 
on in
iden
ia verti
al.
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2.7.1 Semiespa
io elásti
o

En este apartado se presentarán las e
ua
iones del 
ampo in
idente en un semiespa
io elásti
o

sometido a la in
iden
ia de ondas sísmi
as tipo SH, P, SV y de Rayleigh que llegan a la super�
ie


on un ángulo de in
iden
ia totalmente genéri
o. Se 
onsidera un semiespa
io, 
on propiedades

me
áni
as homogéneas dadas por su módulo de elasti
idad E y su 
oe�
iente de Poisson ν .
A través del medio se propaga un tren de ondas 
uya dire

ión se en
uentra 
ontenida en un

plano perpendi
ular a la super�
ie libre del semiespa
io, plano x2x3, formando un ángulo θ0 
on

el eje x2 (ver �gura 2.4).

θ0

A(0)

θ1

A(1)

θ2

A(2)

x2

x3

Super�
ie libre

Figura 2.4: Ondas in
idente y re�ejadas en un semiespa
io elásti
o. Ángulos de interés.

En la �gura 2.4 se muestran los parámetros que de�nen 
ompletamente el problema. Se observa

no sólo el ángulo θ0 de la onda in
idente, sino también los ángulos θ1 y θ2 de las ondas re�ejadas

debido al pro
eso de re�exión 
uando el frente llega a la super�
ie libre del semiespa
io. Se

de�nen también las amplitudes de la onda in
idente 
omo A(0)
y de las ondas re�ejadas 
omo

A(1)
y A(2)

. La 
antidad de ondas re�ejadas depende del tipo de onda in
idente: una onda

re�ejada en el 
aso de que in
ida una onda SH y de dos ondas re�ejadas en el 
aso de ondas

P o SV in
identes.

En 
uanto a la propaga
ión de ondas en un semiespa
io elásti
o, lo expuesto aquí es una

expli
a
ión somera y 
ondensada, para una estudio 
on mayor profundidad y detalle ver p.e.

[A
h73, ES75, Dom93℄.

2.7.1.1 Re�exión de ondas SH, P y SV

El 
ampo de desplazamientos para una onda de 
ualquiera (SH, P o SV) se puede es
ribir en

nota
ión de índi
es de la siguiente manera

ui =
n−1

∑
j=0

d
( j)
i A( j) eik j(s

( j)·r) ; i = 1, 2, 3 (2.100)

siendo ui la 
omponente en dire

ión i del ve
tor desplazamiento u, donde n es el número de
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ua
iones de 
ampo in
idente en el semiespa
io

ondas que intervienen 
onsiderando la in
idente y las re�ejadas, d
( j)
i es la 
omponente en la

dire

ión i del ve
tor d( j)
que 
ontiene los 
osenos dire
tores de los desplazamientos produ
idos

por la onda j, A( j)
y k j son respe
tivamente la amplitud y el número de onda de la onda j, s( j)

es el ve
tor que 
ontiene los 
osenos dire
tores de la dire

ión de propaga
ión de la onda j, r

es el ve
tor de posi
ión del punto del semiespa
io donde se desea determinar el desplazamiento,

i es la unidad imaginaria.

Como ya se ha di
ho, dependiendo del tipo de onda in
idente, la re�exión de la misma en la

super�
ie libre del terreno puede generar una o dos ondas re�ejadas. Si se trata de una onda SH,

úni
amente se genera una onda re�ejada también de tipo SH. En el 
aso de ondas in
identes

P o SV se re�ejan dos ondas, una de tipo P y otra SV. En la tabla 2.2 se re
ogen los tres


asos posibles de ondas in
identes que se estudian en este apartado, así 
omo las ondas que se

re�ejan y los ve
tores s y d que 
ontienen respe
tivamente los 
osenos dire
tores de la dire

ión

de propaga
ión y de los desplazamientos. El superíndi
e (0) se re�ere a la onda in
idente y los

superíndi
es (1) y (2) a las ondas re�ejadas. En el 
aso de la onda SH, los desplazamientos se

produ
en en la dire

ión del eje x1 perpendi
ular a la de propaga
ión (fuera del plano x2x3). Para

la onda P la dire

ión de propaga
ión y de los desplazamientos (
ontenidos en el plano x2x3)

que ésta produ
e es la misma. Si se trata de una onda SV, los desplazamientos están 
ontenidos

en el plano x2x3 y se produ
en en dire

ión perpendi
ular a la de propaga
ión. En la tabla 2.3

se presentan las 
omponentes del 
ampo de desplazamientos de�nido por la expresión (2.100),

que se obtiene 
omo la suma de las 
ontribu
iones de la onda in
idente y las re�ejadas.

Al tratarse de un semiespa
io, en 
ualquier plano x2x3 perpendi
ular a la super�
ie libre del

mismo debe 
umplirse la independen
ia de la 
ondi
ión de 
ontorno 
on x2. Por ello se pueden

estable
er las rela
iones entre el ángulo de la onda in
idente y de las ondas re�ejadas, siendo

θ1 (ángulo de la onda re�ejada del mismo tipo que la onda in
idente) igual a θ0 en todos los


asos. El ángulo θ2 tiene diferentes expresiones dependiendo de si la onda in
idente es de tipo

P o SV (para una onda SH no existe segunda onda re�ejada). En la tabla 2.4 se muestran las

rela
iones entre los ángulos de la onda in
idente y las re�ejadas, siendo κ la rela
ión entre las

velo
idades de propaga
ión de la onda transversal S y la onda longitudinal P 
uyas expresiones

están dadas por (2.23) (κ = cS/cP).

En el 
aso de una onda SV in
idente, existe una parti
ularidad analizando la expresión que

determina θ2. Para un valor de θ0 que 
umple cos(θ0) = κ , el ángulo θ2 de la onda P re�ejada

se anula. Al ángulo que produ
e este efe
to se le denomina ángulo 
ríti
o θcr. Para valores del

ángulo de in
iden
ia menores al ángulo 
ríti
o se 
umple que cos(θ0)> κ , por tanto cos(θ2) =
(1/κ) cos(θ0) > 1, lo 
ual supone una singularidad que impli
a que sin(θ2) es un número


omplejo. Debido a esto se ha
e ne
esaria una modi�
a
ión de la formula
ión que permita

tener en 
uenta este he
ho (ver p.e. [A
h73℄).

Habiendo determinado el 
ampo de desplazamientos para 
ualquier punto del semiespa
io, el

tensor de deforma
iones y el tensor de tensiones pueden obtenerse respe
tivamente a través de

las e
ua
iones de 
ompatibilidad (2.1) y de la ley de 
omportamiento (2.3), que se repiten a


ontinua
ión para mayor 
omodidad

εi j =
1

2
(ui, j +u j,i) ; i, j = 1,2,3 (2.1)

σi j = λ δi j εkk +2 µ εi j ; i, j = 1,2,3 (2.3)

Una vez obtenido el tensor de tensiones se estable
en las 
ondi
iones de 
ontorno que permiten

determinar las rela
iones entre la amplitud de la onda in
idente y las amplitudes de las ondas

re�ejadas. Di
has 
ondi
iones deben 
umplirse para la 
ota de super�
ie libre (x3 = 0) y deben
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ser nulas en términos de la tensión normal y tangen
ial. En la tabla 2.5 se presenta el tensor

de deforma
iones y el tensor de tensiones para 
ada 
aso de onda in
idente, junto 
on las


ondi
iones de 
ontorno.

Apli
ando las 
ondi
iones de 
ontorno sobre los términos del tensor de tensiones 
orrespon-

dientes se obtiene un sistema algebrai
o de e
ua
iones 
on una in
ógnita más que el número

de e
ua
iones, pero 
onsiderando la amplitud de la onda in
idente 
omo unitaria, se puede

resolver di
ho sistema para obtener los valores de las amplitudes de las ondas re�ejadas. En la

tabla 2.6 se presentan las expresiones de las amplitudes de la onda in
idente y las re�ejadas. Si

se analizan las expresiones de las amplitudes de las ondas re�ejadas para el 
aso de una onda

P in
idente, se puede ver que existe un 
ierto ángulo θ0 que produ
e que la amplitud de la

onda P re�ejada se anule, produ
iéndose un fenómeno 
ono
ido 
omo 
ambio de modo. De

esta manera, una onda P in
idente se re�eja en forma de una úni
a onda de tipo SV (de ahí el


ambio de modo). El valor de di
ho ángulo de in
iden
ia para el que sólo se re�eja una onda

SV está dado por el valor del 
oe�
iente de Poisson. Este fenómeno de 
ambio de modo se da

también en la in
iden
ia de ondas SV, por lo que una onda SV in
idente se re�eja en una úni
a

onda de tipo P. Para más detalles sobre el 
ambio de modo ver p.e. [A
h73, Dom93℄.
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Tabla 2.2: Ondas re�ejadas y ve
tores s y d según la onda in
idente

Onda in
idente Onda/s re�ejada/s Ve
tores s Ve
tores d

SH (0) SH (1)
s(0) = [0, cos(θ0), sin(θ0)]

s(1) = [0, cos(θ1),−sin(θ1)]

d(0) = [1, 0, 0]

d(1) = [1, 0, 0]

P (0)

P (1)

SV (2)

s(0) = [0, cos(θ0), sin(θ0)]

s(1) = [0, cos(θ1),−sin(θ1)]

s(2) = [0, cos(θ2),−sin(θ2)]

d(0) = [0, cos(θ0), sin(θ0)]

d(1) = [0, cos(θ1),−sin(θ1)]

d(2) = [0,−sin(θ2),−cos(θ2)]

SV (0)

SV (1)

P (2)

s(0) = [0, cos(θ0), sin(θ0)]

s(1) = [0, cos(θ1),−sin(θ1)]

s(2) = [0, cos(θ2),−sin(θ2)]

d(0) = [0, sin(θ0),−cos(θ0)]

d(1) = [0,−sin(θ1),−cos(θ1)]

d(2) = [0, cos(θ2),−sin(θ2)]

Tabla 2.3: Ondas re�ejadas y 
ampo de desplazamientos según la onda in
idente

Onda in
idente Onda/s re�ejada/s Campo de desplazamientos

SH (0) SH (1)
u1 = d

(0)
1 A

(0)
SH e−ikS (s

(0)·r)+d
(1)
1 A

(1)
SH e−ikS (s

(1)·r)

u2 = 0

u3 = 0

P (0)

P (1)

SV (2)

u1 = 0

u2 = d
(0)
2 A

(0)
P e−ikP (s

(0)·r)+d
(1)
2 A

(1)
P e−ikP (s

(1)·r)+d
(2)
2 A

(2)
SV e−ikS (s

(2)·r)

u3 = d
(0)
3 A

(0)
P e−ikP (s

(0)·r)+d
(1)
3 A

(1)
P e−ikP (s

(1)·r)+d
(2)
3 A

(2)
SV e−ikS (s

(2)·r)

SV (0)

SV (1)

P (2)

u1 = 0

u2 = d
(0)
2 A

(0)
SV e−ikS (s

(0)·r)+d
(1)
2 A

(1)
SV e−ikS (s

(1)·r)+d
(2)
2 A

(2)
P e−ikS (s

(2)·r)

u3 = d
(0)
3 A

(0)
SV e−ikS (s

(0)·r)+d
(1)
3 A

(1)
SV e−ikS (s

(1)·r)+d
(2)
3 A

(2)
P e−ikP (s

(2)·r)

4
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Tabla 2.4: Ondas re�ejadas. Rela
iones 
on el ángulo de in
iden
ia θ0

Onda in
idente Onda/s re�ejada/s Ángulos

SH (0) SH (1) θ1 = θ0

P (0)

P (1)

SV (2)
θ1 = θ0

θ2 = cos−1[κ cos(θ0)]

SV (0)

SV (1)

P (2)
θ1 = θ0

θ2 = cos−1[ 1
κ cos(θ0)]

Tabla 2.5: Tensores de deforma
iones y tensor de tensiones. Condi
iones de 
ontorno.

Onda in
idente Onda/s re�ejada/s Tensor de deforma
iones Tensor de tensiones Condi
iones de 
ontorno

SH (0) SH (1)




0 ε12 ε13

ε21 0 0

ε31 0 0







0 σ12 σ13

σ21 0 0

σ31 0 0


 x3 = 0 →{ σ13 = 0

P (0)

P (1)

SV (2)




0 0 0

0 ε22 ε23

0 ε32 ε33







σ11 0 0

0 σ22 σ23

0 σ32 σ33


 x3 = 0 →

{
σ23 = 0

σ33 = 0

SV (0)

SV (1)

P (2)




0 0 0

0 ε22 ε23

0 ε32 ε33







σ11 0 0

0 σ22 σ23

0 σ32 σ33


 x3 = 0 →

{
σ23 = 0

σ33 = 0

4
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Tabla 2.6: Amplitudes de la onda in
idente y las ondas re�ejadas

Onda in
idente Onda/s re�ejada/s Condi
iones de 
ontorno Amplitudes

SH (0) SH (1) x3 = 0 →{ σ13 = 0 A
(0)
SH = A

(1)
SH = 1

P (0)

P (1)

SV (2)
x3 = 0 →

{
σ23 = 0

σ33 = 0

A
(0)
P = 1

A
(1)
P = κ2 sin(2θ0) sin(2θ2)−cos2(2θ2)

κ2 sin(2θ0) sin(2θ2)+cos2(2θ2)

A
(2)
SV = 2κ sin(2θ0) cos(2θ2)

κ2 sin(2θ0) sin(2θ2)+cos2(2θ2)

SV (0)

SV (1)

P (2)
x3 = 0 →

{
σ23 = 0

σ33 = 0

A
(0)
SV = 1

A
(1)
SV = κ2 sin(2θ0) sin(2θ2)−cos2(2θ2)

κ2 sin(2θ0) sin(2θ2)+cos2(2θ2)

A
(2)
P = κ sin(4θ0)

κ2 sin(2θ0) sin(2θ2)+cos2(2θ2)

4
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idad y poroelasti
idad. Propaga
ión de ondas. Formula
ión mediante el MEC

2.7.1.2 Ondas de Rayleigh

Se estudia en este apartado la existen
ia de ondas de Rayleigh (ondas super�
iales) en el 
aso

de ondas planas que se propagan en la dire

ión del eje x2 (ver �gura 2.5).

x2

x3

Frente de onda

Movimiento de

una partí
ula

Figura 2.5: Propaga
ión y movimiento de una partí
ula provo
ado por una onda de Rayleigh

Para este tipo de ondas el desplazamiento de
ae de manera exponen
ial 
on la profundidad.

Las 
omponentes del 
ampo de desplazamientos provo
ado por una onda de esta naturaleza

que se propaga en la dire

ión positiva del eje x2 
on una velo
idad c y un número de onda

k = ω/c se de�ne 
omo

u1 = 0

u2 = Aebx3 eik (ct−x2)

u3 = Bebx3 eik (ct−x2)

(2.101)

Las expresiones no nulas del 
ampo de desplazamientos de�nido por las expresiones (2.101) son

el resultado del produ
to de dos exponen
iales. Para valores positivos de b, el primer exponen
ial

ebx3
posee un exponente negativo (el valor de la 
oordenada x3 es siempre negativa tal y 
omo se

han de�nido los ejes), lo 
ual impli
a que la amplitud de la onda disminuye 
on la profundidad.

El segundo exponen
ial eik (ct−x2)
representa una onda que se propaga 
on velo
idad c en la

dire

ión positiva del eje x2.

Para este problema, debe veri�
arse la e
ua
ión de gobierno del problema. Por tanto, se susti-

tuyen en la e
ua
ión de Navier (2.6) las 
omponentes no nulas del 
ampo de desplazamientos

(u2, u3) dado por las expresiones (2.101). Se obtiene de esta manera un sistema de dos e
ua-


iones 
uyas in
ógnitas son A y B. Para que di
ho sistema tenga solu
ión distinta de la trivial,

el determinante del sistema debe ser uno. Se trata por tanto de un problema de autovalores que

determina los valores de b que 
ondu
en a una solu
ión no trivial. La e
ua
ión 
ara
terísti
a

de di
ho sistema se es
ribe a 
ontinua
ión 
omo

[
b2 µ − k2 (λ +2 µ)+ρ ω2

][
b2 (λ +2 µ)− k2 µ +ρ ω2

]
− [ibk (λ +µ)]2 = 0 (2.102)
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Dividiendo di
ha e
ua
ión 
ara
terísti
a entre ρ y teniendo en 
uenta las siguientes identidades

c2
S =

µ

ρ
; c2

P =

(
λ +2 µ

ρ

)
; c2

P − c2
S =

(
λ +µ

ρ

)
; ω2 = k2 c2

(2.103)

la e
ua
ión (2.102) puede es
ribirse 
omo

b4 c2
S c2

P +b2
[
k2 c2

S (c
2 − c2

S)+ k2 c2
P (c

2 − c2
P)+ k2 (c2

P − c2
S)
]
+ k4 (c2 − c2

P)(c
2 − c2

S) = 0 (2.104)

De las 
uatro solu
iones de esta última e
ua
ión, sólo se toman las raí
es positivas debido a la

ne
esidad de que el parámetro b sea positivo para que la amplitud disminuya 
on la profundidad

y se 
umpla la realidad físi
a del problema. Estas dos raí
es positivas son

b2
1 = k2

(
1− c2

c2
S

)
; b2

2 = k2

(
1− c2

c2
P

)
(2.105)

debiendo 
umplirse además que la velo
idad de propaga
ión c de este tipo de ondas sea menor

que la velo
idad cS de las ondas S y por tanto menor que la velo
idad cP de las ondas P, esto

es, c < cS < cP. Sustituyendo estas dos raí
es (2.105) en la primera de las e
ua
iones de Navier

que da lugar a la e
ua
ión 
ara
terísti
a (2.102) se obtienen dos expresiones que rela
ionan las

amplitudes de las dos ondas involu
radas y que se es
riben a 
ontinua
ión 
omo

(
B

A

)

1

=− ik

b1

;

(
B

A

)

2

=
b2

ik
(2.106)

A la vista del desarrollo podemos 
on
luir que para que exista solu
ión al problema debe darse

una rela
ión entre las amplitudes A y B que depende de los valores de b. De esta forma, el


ampo de desplazamientos para este tipo de ondas que satisfa
e la e
ua
ión de gobierno se

de�ne 
omo

u1 = 0

u2 =
[
A1 eb1 x3 +A2 eb2 x3

]
eik (ct−x2)

u3 =

[
− ik

b1

A1 eb1 x3 +
b2

ik
A2 eb2 x3

]
eik (ct−x2)

(2.107)

Para de�nir 
ompletamente los desplazamientos es ne
esario determinar el valor de las ampli-

tudes A1 y A2 así 
omo el número de onda k. Para ello se deben apli
ar las 
ondi
iones de


ontorno en términos de tensiones nulas a la 
ota de la super�
ie libre del semiespa
io (x3 = 0).
A través del 
ampo de desplazamientos y apli
ando la e
ua
ión de 
ompatibilidad (2.1) y pos-

teriormente ha
iendo uso de la ley de 
omportamiento (2.3) se obtienen respe
tivamente el

tensor de deforma
iones εi j y el tensor de tensiones σi j, los 
uales se es
riben a 
ontinua
ión

εi j =




0 0 0

0 ε22 ε23

0 ε32 ε33


 ; σi j =




σ11 0 0

0 σ22 σ23

0 σ32 σ33




(2.108)

Las 
ondi
iones de 
ontorno a apli
ar para x3 = 0 en términos de los elementos de tensor de

tensiones son σ23 = 0 y σ33 = 0. Con esto se obtiene un sistema de dos e
ua
iones tal que
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(2− γS)A1 +2(1− γP)
1/2 (1− γS)

1/2 A2 = 0

2A1 +(2− γS)A2 = 0
(2.109)


umpliéndose que

k2

b2
1

=
1

1− γS

;
b2

2

k2
= 1− γP (2.110)

y siendo γS = c2/c2
S y γP = c2/c2

P.

Para que exista solu
ión distinta de la trivial para A1 y A2, el determinante del sistema (2.109)

debe ser nulo. Nuevamente se trata de un problema de autovalores en los que la e
ua
ión


ara
terísti
a es

(2− γS)
2 −4

(
1− µ

λ +2 µ
γS

)1/2

(1− γS)
1/2 = 0 (2.111)

teniendo en 
uenta la rela
ión γP =
µ

λ+2 µ γS. La solu
ión de esta e
ua
ión 
ara
terísti
a 
ondu
e

al valor de γS, y por tanto a la velo
idad de propaga
ión c si se 
ono
en las propiedades del

medio.

Por otro lado, a través de la segunda de las e
ua
iones del sistema (2.109) se en
uentra la

siguiente rela
ión entre A1 y A2

A2 =−
(

2

2− γS

)
A1 (2.112)

Si introdu
imos esta rela
ión en el 
ampo de desplazamientos dado por (2.107), éste �nalmente

queda 
omo

u1 = 0

u2 = A1

(
eb1 x3 − 2

2− γS

eb2 x3

)
eik (ct−x2)

u3 = A1

(
− ik

b1

eb1 x3 − b2

ik

2

2− γS

eb2 x3

)
eik (ct−x2)

(2.113)

Es posible en
ontrar un paralelismo entre las expresiones del 
ampo de desplazamientos provo-


ado por una onda de Rayleigh y la expresión (2.100) del 
ampo de desplazamientos provo
ado

por ondas P y S. Si se 
omparan la expresión general del 
ampo dado por (2.100) 
on el 
am-

po de desplazamientos (2.113) obtenido para una onda de Rayleigh, en lo que respe
ta a los

ve
tores d( j)
y S( j)

, que 
ontienen respe
tivamente los 
osenos dire
tores de la dire

ión de los

desplazamientos y la dire

ión de propaga
ión, se puede es
ribir

d(0) =




0

1

− ik
b1


 ; d(1) =




0

1

− b2

ik




s(0) =




0

1
ib1

k


 ; s(1) =




0

1
ib2

k




(2.114)
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2.7 E
ua
iones de 
ampo in
idente en el semiespa
io

Es evidente la naturaleza 
ompleja en la dire

ión del eje x3 de estos ve
tores.

2.7.1.3 Extensión de las expresiones bidimensionales al problema general en 3 di-

mensiones

La formula
ión planteada hasta este momento permite tener en 
uenta una onda 
on in
iden
ia

genéri
a 
ontenida en el plano x2x3. Sin embargo, no se re�eja en ella la posible in
iden
ia


ontenida en 
ualquier otro plano. Se muestra en este apartado la implementa
ión de esa

posibilidad.

En la �gura 2.6 se puede observar una representa
ión del sistema de ejes empleado y de la

rela
ión existente entre los ejes en los que se ha abordado el problema hasta el momento,

denominados en adelante (x̃2x̃3) y los nuevos ejes genéri
os (x2x3) donde (x3 = x̃3)

x1x̃1

x2

x̃2

ϕ0

Figura 2.6: Rela
ión entre los ejes (x̃2x̃3) y (x2x3). Ángulo ϕ0.

De�niendo un 
onjunto de ve
tores unitarios en la dire

ión de los tres ejes 
artesianos del

problema ini
ial (ĩ1, ĩ2, ĩ3) y otro (i1, i2, i3) en dire

ión de los nuevos ejes, se puede demostrar

que existe entre ellos la siguiente rela
ión




i1
i2
i3


=




cos(ϕ0) sin(ϕ0) 0

−sin(ϕ0) cos(ϕ0) 0

0 0 1






ĩ1

ĩ2

ĩ3




(2.115)

La matriz que rela
iona el 
onjunto de ve
tores unitarios del sistema de ejes ini
ial 
on el del

sistema x1x2x3 se denomina matriz de rota
ión y se denotará 
omo R. De esta forma 
ualquier

ve
tor es
rito respe
to al sistema de referen
ia anterior (x̃1, x̃2, x̃3) puede es
ribirse en el nuevo

sistema (x1, x2, x3) premultipli
ando por di
ha matriz R. Se muestran a 
ontinua
ión los ve
tores

que están afe
tados por el 
ambio de ejes 
oordenados

u = Rũ ; d( j) = Rd̃( j) ; s( j) = Rs̃( j) ; r = Rr̃ (2.116)
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2.7.2 Semiespa
io poroelásti
o

Se presentan en este apartado las expresiones del 
ampo de desplazamientos y tensiones que

provo
a un tren de ondas que se propaga a través del semiespa
io poroelásti
o. Se estudiarán

en este 
aso ondas de tipo S y P 
on in
iden
ia verti
al (ver �gura 2.7), motivo por el 
ual

úni
amente se re�eja una úni
a onda del mismo tipo que la in
idente.

Super�
ie libre

x3

x2

O

n

d

a

i

n




i

d

e

n

t

e

O

n

d

a

r

e

�

e

j

a

d

a

Figura 2.7: Onda in
idente y re�ejada en dire

ión verti
al en un semiespa
io poroelásti
o.

2.7.2.1 Onda tipo S verti
al

Se supone una onda plana transversal S 
on in
iden
ia verti
al 
ontenida en el plano x2x3

propagándose, a través de un semiespa
io 
ontinuo, lineal y homogéneo de tipo poroelásti
o,

en dire

ión del eje x3 y produ
iendo desplazamientos en la dire

ión de x2. Al llegar a la

super�
ie libre del semiespa
io se re�eja una onda del mismo tipo que se propaga en la misma

dire

ión pero en sentido 
ontrario (ver �gura 2.7). Teniendo en 
uenta la 
ontribu
ión de la

onda in
idente y re�ejada, las 
omponentes del 
ampo de desplazamientos uI que se produ
e

sobre el esqueleto sólido se puede es
ribir 
omo

(u1)I = 0

(u2)I = Ainc e−ikS x3 +Aref eikS x3

(u3)I = 0

(2.117)

siendo Ainc y Aref las amplitudes de la onda in
idente y re�ejada respe
tivamente, kS el número

de onda e i la unidad imaginaria. El 
ampo de desplazamientos en la fase �uida UI se puede

obtener teniendo en 
uenta las expresiones (2.28b), (2.32) y (2.34), así las 
omponentes del

mismo se es
riben 
omo
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io

(U1)I = 0

(U2)I =− ρ̂12

ρ̂22

(u2)I =− ρ̂12

ρ̂22

(
Ainc e−ikS x3 +Aref eikS x3

)

(U3)I = 0

(2.118)

Por tanto, falta sólo determinar las amplitudes de la ondas in
idente y re�ejada para de�nir


ompletamente el 
ampo de desplazamientos. Para ello se apli
an las 
ondi
iones de 
ontorno

en la super�
ie libre del semiespa
io (x3 = 0). El tensor de deforma
iones se obtiene a partir

del 
ampo de desplazamientos del esqueleto sólido a través de la e
ua
ión de 
ompatibilidad

(2.8) y se es
ribe 
omo

εi j =




0 0 0

0 0 ε23

0 ε32 0




(2.119)

siendo la expresión de los términos no nulos del tensor la siguiente

ε23 = ε32 =
1

2
ikS

(
−Ainc e−ikS x3 +Aref eikS x3

)
(2.120)

El tensor de tensiones sobre el esqueleto sólido se obtiene ha
iendo uso de la expresión de la ley

de 
omportamiento (2.14a), la 
ual, teniendo en 
uenta que se trata de una onda equivolumial

(e = ε = 0), queda 
omo τi j = 2 µ εi j. Se ve de manera obvia según la expresión (2.14b) que

para este tipo de ondas la tensión en el �uido τ es nula. Los términos no nulos del tensor de

tensiones son por tanto

τ23 = τ32 = i µ kS

(
−Ainc e−ikS x3 +Aref eikS x3

)
(2.121)

Una vez obtenido el tensor de tensiones podemos apli
ar la 
ondi
ión en términos de tensión

libre en la super�
ie libre del semiespa
io, esto es, τ23 = 0 para x3 = 0. Apli
ando esta 
ondi
ión

de 
ontorno en (2.121) se obtiene que

−Ainc +Aref = 0 → Ainc = Aref (2.122)

Ahora, para estable
er el valor de estas amplitudes se puede plantear la 
ondi
ión de 
ontorno

en términos de desplazamientos de dos maneras. Una de ellas es 
onsiderando 
omo unitario el

desplazamiento del esqueleto sólido (u2)I = 1 en la super�
ie libre (x3 = 0). Apli
ando esto en

la expresión (2.117) y teniendo en 
uenta (2.122) se obtiene

Ainc = Aref =
1

2
(2.123)

Por otro lado, puede 
onsiderarse 
omo unitario un desplazamiento promedio (ũ2)I del esqueleto

sólido y la fase �uida que se expresa 
omo (ũ2)I = (1−φ)(u2)I+φ (U2)I. Apli
ando la 
ondi
ión

de 
ontorno (ũ2)I = 1 para x3 = 0, teniendo en 
uenta las expresiones (2.117), (2.118), la rela
ión

entre las amplitudes (2.122) y operando se llega a que
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Ainc = Aref =
1

2

1

1−φ
(

1+ ρ̂12

ρ̂22

)
(2.124)

2.7.2.2 Onda tipo P verti
al

Se vio en la se

ión 2.3.2 que al apli
ar el operador divergen
ia sobre las e
ua
iones de gobierno

(2.16) y 
onsiderando una onda armóni
a plana 
on in
iden
ia verti
al 
ontenida en el plano

x2x3, se resolvía un problema de autovalores y autove
tores, que eviden
iaba la existen
ia de

dos ondas de tipo P o dos modos de vibra
ión. Una de ellas se denomina onda de primer tipo

(P1) 
on una velo
idad de propaga
ión cP1, mayor que la de la otra, llamada onda de segundo

tipo (P2), 
on una velo
idad de propaga
ión cP2. Ambas velo
idades de propaga
ión son los

autovalores del problema y daban lugar, 
ada una, respe
tivamente, a los autove
tores que

de�nen los modos para la onda P1 (DP1
u , DP1

U ) y la onda P2 (DP2
u , DP2

U ). Se dijo también que

el amortiguamiento es mu
ho mayor para la onda P2, por lo que ésta se atenúa rápidamente

y sólo se dete
ta en las proximidades de la perturba
ión (fuente lejana). Los autove
tores del

modo P1 se 
al
ulan sustituyendo (2.45) en (2.29) y 
onsiderando kP = kP1. Después de resolver

el sistema se obtienen los valores de (DP1
u , DP1

U ), los 
uales se muestran a 
ontinua
ión

DP1
u = (1+0i) ; DP1

U =
k2

P1

(
λ +2 µ + Q2

R

)
−ω2 ρ̂11

ω2 ρ̂12 − k2
P1 Q

(2.125)

Con todo esto, si 
onsideramos una onda plana longitudinal de tipo P 
on in
iden
ia verti
al

que se propaga a través de una semiespa
io 
ontinuo, lineal, homogéneo y poroelásti
o, la


ual está 
ontenida en el plano x2x3 y se propaga en dire

ión x3, ésta se re�eja en una onda

P que se propaga en la misma dire

ión pero sentido 
ontrario (ver �gura 2.7). El 
ampo

de desplazamientos que produ
e la 
ontribu
ión de la onda in
idente y re�ejada sólo tiene


omponente en la dire

ión del eje x3. Como se ha di
ho anteriormente, la onda P2 se amortigua

rápidamente y no se 
onsidera ya que es fá
il demostrar que una onda in
idente de tipo P1

se re�eja sólo en una onda del mismo tipo. Teniendo en 
uenta por tanto sólo el modo P1, la


omponente verti
al del 
ampo de desplazamientos de la fase sólida y �uida pueden es
ribirse

respe
tivamente 
omo

(u3)I = DP1
u

(
AP1

inc e−ikP1 x3 +AP1
ref eikP1 x3

)
(2.126a)

(U3)I = DP1
U

(
AP1

inc e−ikP1 x3 +AP1
ref eikP1 x3

)
(2.126b)

siendo AP1
inc y AP1

ref las amplitudes de la onda in
idente y re�ejada respe
tivamente, kP1 el número

de onda e i la unidad imaginaria.

Para determinar las amplitudes de las ondas in
idente y re�ejada es ne
esario apli
ar 
ondi
iones

de 
ontorno. Para ello se obtiene primero el tensor de deforma
iones sobre el esqueleto sólido

a través de la e
ua
ión de 
ompatibilidad (2.8) y que queda 
omo

εi j =




0 0 0

0 0 0

0 0 ε33




(2.127)

52



2.7 E
ua
iones de 
ampo in
idente en el semiespa
io

El úni
o término no nulo ε33 del tensor de tensiones representa además la dilata
ión volumétri
a

e de la fase sólida. La dilata
ión volumétri
a de ambas fases se obtiene a través de las expresiones

(2.9a) que para este 
aso se es
riben 
omo

e = DP1
u ikP1

(
−AP1

inc e−ikP1 x3 +AP1
ref eikP1 x3

)
(2.128a)

ε = DP1
U ikP1

(
−AP1

inc e−ikP1 ,x3 +AP1
ref eikP1 x3

)
(2.128b)

Una vez obtenidos el tensor de deforma
iones y las dilata
iones volumétri
as e y ε , a través de

la ley de 
omportamiento (2.14) se obtiene el tensor de tensiones τi j sobre el esqueleto sólido

y la tensión equivalente en el �uido τ . Las siguientes expresiones representan los términos no

nulos del tensor de tensiones y la tensión equivalente en el �uido

τ11 =

(
λ +

Q2

R

)
e+Qε (2.129a)

τ22 =

(
λ +

Q2

R

)
e+Qε (2.129b)

τ33 =

(
λ +

Q2

R
+2 µ

)
e+Qε (2.129
)

τ = Qe+Rε (2.129d)

Las 
ondi
iones de 
ontorno para este problema están dados en términos de la tensión τ33 y la

tensión equivalente en el �uido τ , ambas nulas a la 
ota de la super�
ie libre del semiespa
io

poroelásti
o. Por tanto, parti
ularizando (2.128a) para x3 = 0 y sustituyendo en (2.129
) y

(2.129d) se pueden es
ribir las siguientes e
ua
iones

τ33(x3 = 0) = ikP1

[(
λ +

Q2

R
+2 µ

)
DP1

u +QDP1
U

] (
−AP1

inc +AP1
ref

)
= 0 (2.130a)

τ(x3 = 0) = ikP1

(
QDP1

u +RDP1
U

) (
−A P1

inc +AP1
ref

)
= 0 (2.130b)

Es evidente que para que ambas e
ua
iones se 
umplan la rela
ión entre las amplitudes de la

onda in
idente y re�ejada debe ser

−AP1
inc +AP1

ref = 0 → AP1
inc = AP1

ref (2.131)

Ahora, igual que para el 
aso de las ondas transversales 
on in
iden
ia verti
al, para determinar

el valor de las amplitudes se puede plantear la 
ondi
ión de 
ontorno en términos de despla-

zamientos de dos maneras. Por un lado 
onsiderando unitario el desplazamiento verti
al del

esqueleto sólido (u3)I = 1 a la 
ota de la super�
ie (x3 = 0), o bien por 
ontra 
onsiderando el

desplazamiento verti
al promedio (ũ3)I = (1−φ)(u3)I+φ (U3)I 
omo unitario para x3 = 0. La

primera de las 
onsidera
iones 
ondu
e a que

AP1
inc = AP1

ref =
1

2
(2.132)

mientras que si se 
onsidera (ũ3)I = 1 se obtiene que
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AP1
inc = AP1

ref =
1

2

1

(1−φ)DP1
u +φ DP1

U

(2.133)

54



Caso prá
ti
o de estudio:

respuesta dinámi
a y sísmi
a.

Importan
ia de la evalua
ión real

de la rigidez estru
tural

Capítulo3

3.1 Introdu

ión

El análisis de la respuesta dinámi
a de una estru
tura mási
a 
on po
a esbeltez, par
ial o to-

talmente enterrada, históri
amente se ha realizado asumiendo la hipótesis de rigidez in�nita de

ésta. Se en
uadran en esta tipología estru
turas tales 
omo 
imenta
iones, pozos de 
imenta-


ión, silos, rea
tores, et
... En 
on
reto, las estru
turas embebidas se 
onsideran 
omo rígidas


uando la rela
ión entre la profundidad del embebimiento y el an
ho es menor a 2, 3 ó 4,

dependiendo del autor y la apli
a
ión [Myl01a, VAG09℄, por tanto mu
has de estas estru
turas

han sido diseñadas siguiendo di
ha hipótesis de rigidez.

Este 
apítulo muestra el estudio de la respuesta sísmi
a de una estru
tura real de grandes

dimensiones, la 
ual está enterrada en gran parte de su longitud total. La rela
ión entre la

longitud de embebimiento y el an
ho de la estru
tura es menor a 2, aproximadamente 1.7, por

lo que debe ser 
onsiderada 
omo po
o esbelta, siendo ésta una tipología estru
tural analizada

tradi
ionalmente a través del método de los tres pasos. Para di
ho estudio se utiliza el método de

elementos de 
ontorno expuesto en el 
apítulo 2 anterior, 
on el objetivo prin
ipal de 
omparar

la respuesta a través de dos metodologías, una de subestru
tura
ión, basada en la hipótesis de

rigidez in�nita de la estru
tura, y otra dire
ta, en la que por 
ontra se 
onsidera un valor �nito

más realista para la rigidez estru
tural.

El estudio del problema de apli
a
ión que aquí se presenta tiene 
omo objetivo, no sólo mostrar

el uso del método de los elementos de 
ontorno en un problema de intera

ión suelo�estru
tura,

sino también realizar un estudio de las 
onse
uen
ias que puede provo
ar en la estima
ión de

la respuesta sísmi
a del sistema la hipótesis de rigidez in�nita de la estru
tura. Esto último

se analizará 
omparando los resultados obtenidos a través de dos metodologías diferentes, una

de ellas 
onsiderando la estru
tura 
omo perfe
tamente rígida (método de los 3 pasos) y otra

asumiendo la verdadera �exibilidad de la misma (metodología dire
ta). Se determinará en el

dominio de la fre
uen
ia el desplazamiento en varios puntos de la estru
tura normalizados 
on

el desplazamiento de 
ampo libre del terreno. Di
hos resultados serán posteriormente transfor-

mados al dominio del tiempo usando la transformada de Fourier.
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Primero se des
ribe el problema a analizar y se revisan de manera breve el método de los tres

pasos y la metodología dire
ta. Finalmente se presentan de manera 
omparativa los resulta-

dos obtenidos usando ambas metodologías. Se men
ionarán no sólo aspe
tos importantes de

los resultados �nales, sino también de algunos resultados par
iales. Los resultados muestran

que asumir 
omportamiento de sólido rígido para la estru
tura puede infravalorar la respuesta

de la misma. El método de los elementos de 
ontorno se utiliza en la apli
a
ión de ambas

metodologías.

3.2 Des
rip
ión del problema

La �gura 3.1 muestra la des
rip
ión geométri
a de la estru
tura a estudiar, junto 
on la estrati-

grafía del emplazamiento. Ésta es de hormigón y 
asi 
ilíndri
a de 80 metros de longitud, 
uyos

50 metros inferiores están embebidos en el terreno. El diámetro exterior de la parte no embebida

es de 28 metros. En la parte enterrada se han añadido los muros de ex
ava
ión, resultando en

un diámetro exterior de 30 metros. Los 20 metros inferiores de la estru
tura están 
ompuestos

por un gran número de forjados y rigidizadores que la dotan de una alta rigidez en esa zona.

Es por ello que esta parte inferior, de�nida 
omo dominio 2, (el dominio 1 
orresponde al resto

de la estru
tura) ha sido 
onsiderada ma
iza 
on la misma rigidez del hormigón pero 
on una

densidad equivalente, de manera que no se modi�
an los valores iner
iales de la estru
tura.

La tabla 3.1 muestra los valores de las propiedades de los dominios de la estru
tura y terreno,

siendo µ el módulo de rigidez transversal, ν el 
oe�
iente de Poisson, ρ la densidad, ξ el


oe�
iente de amortiguamiento y cS la velo
idad de propaga
ión de la onda S. La masa total

de la estru
tura M = 61.3 · 106
kg, el momento de iner
ia Ig = 3.51 · 1010

kg·m

2
y la distan
ia

desde la base al 
entro de gravedad hg = 28.36m. La 
itada estru
tura es parte de una gran

instala
ión industrial y en su interior se en
uentran dispositivos sensibles, 
omo pueden ser una

unidad de bombeo o una grúa, que pueden verse seriamente afe
tados durante un terremoto.

Es por esta razón que parte del análisis sísmi
o se 
entrará en las fre
uen
ias naturales de estos

dispositivos, estimadas en torno a 3.89, 7.69 y 12.05 Hz.

g

O

∅ 25 m

∅ 28 m

∅ 30 m

30 m

30 m

20 m

hg

+0.0 m

-37.0 m

-46.0 m

domain 1

domain 2

soil surfa
e

2.5 m

1.5 m

layer 1

layer 2

layer 3

x
z

M = 61.3 ·106
kg ; Ig = 3.51 ·1010

kg ·m2
; hg = 28.36 m

Figura 3.1: Des
rip
ión geométri
a de la estru
tura.

El suelo en el que se en
uentra embebida la estru
tura está 
ompuesto por tres estratos. El
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3.2 Des
rip
ión del problema

Tabla 3.1: Propiedades elásti
as de la estru
tura y el terreno

domain 1 domain 2 soil layer 1 soil layer 2 soil layer 3

ν 0.2 0.2 0.3 0.3 0.3

ξ 0.05 0.05 0.05 0.05 0.05

ρ (kg/m

3
) 2685.85 2253.42 2000 2100 2200

µ (N/m

2
) 1.15·1010

1.15·1010 5 ·108 1.029 ·109 2.2 ·109

cS (m/s) 2069.23 2259.06 500 700 1000

primero es una forma
ión de ar
illas rígidas que llega a 37 metros de profundidad. El segundo

está formado por 
onglomerados y tiene 9 metros de espesor. Finalmente, el estrato inferior

es un semiespa
io de ro
a sedimentaria detríti
a muy 
onsolidada. La determina
ión de las

propiedades que 
ara
terizan el terreno se llevó a 
abo a partir de ensayos de 
ampo de tipo

estáti
o. A partir de éstos y utilizando 
orrela
iones y reglas empíri
as bien estable
idas [Ish96,

SI70℄, se estimaron las velo
idades de propaga
ión de la onda S y el módulo de elasti
idad

transversal. Para en
ontrar, entre varios posibles (todos 
ompatibles 
on las pruebas de 
ampo),

el per�l de terreno más 
onservador se realizó un análisis de sensibilidad. Después de de�nir

los a
elerogramas de diseño a 
ota de la super�
ie libre, los 
orrespondientes espe
tros de

a
elera
iones fueron obtenidos a la 
ota de -50 metros (usando SHAKE [SLS72℄ para obtener

los a
elerogramas a di
ha 
ota). El per�l de terreno mostrado en la �gura 3.2 fue �nalmente

elegido ya que 
on éste se obtuvieron los valores más 
onservadores en el rango de fre
uen
ias de

interés en rela
ión a los dispositivos alojados en la estru
tura. Todos los resultados mostrados se

basan en este per�l. La tabla 3.1 in
luye también las propiedades que 
ara
terizan los diferentes

estratos que 
omponen el terreno.

x

z

+0.0 m

-37.0 m

-46.0 m

500 m/s

700 m/s

1000 m/s

Figura 3.2: Per�l de velo
idades de onda del terreno.

El objetivo del estudio dinámi
o es estable
er el movimiento en puntos de la estru
tura 
oherente


on un 
ampo de desplazamientos 
ono
ido del terreno. Éste último ha sido de�nido a partir

del espe
tro de respuesta mostrado en la �gura 3.3a, para un pi
o de a
elera
ión del suelo
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igual a 0.17 g y 10 s de dura
ión 
onven
ional. Con el �n de darle sentido estadísti
o, se han

generado tres señales diferentes usando SIMQKE [Gas76℄ y luego se han modulado usando

el esquema representado en la �gura 3.3b [JHT68℄. Los a
elerogramas horizontales obtenidos

son mostrados en la �gura 3.4, mientras que los 
orrespondientes espe
tros de respuesta son

representados en la �gura 3.5 junto 
on el espe
tro de respuesta de diseño.
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Figura 3.3: (a) Espe
tro de respuesta de diseño en a
elera
iones, (b) Esquema de modula
ión.
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3.3 Metodología

Una vez que la geometría de la estru
tura, la estratigrafía del terreno y la a

ión sísmi
a han

sido de�nidas, se estudiará la respuesta del sistema usando dos metodologías: en una de ellas se

admitirá la hipótesis de rigidez in�nita de la estru
tura y se llevará a 
abo a través del método

de los tres pasos; por 
ontra en la otra se 
onsiderará la verdadera rigidez de la estru
tura a

partir de las propiedades de�nidas en el apartado anterior y se eje
utará mediante el estudio

dire
to a
oplado de todo el sistema suelo�estru
tura (ver �gura 3.6). El objetivo es obtener
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simultáneamente la respuesta en la super�
ie y en puntos de la estru
tura 
onsiderando 
omo

ex
ita
ión una onda plana S 
on in
iden
ia verti
al.
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Figura 3.6: Método dire
to vs. método de los tres pasos

El método de los tres pasos es una estrategia de subestru
tura
ión que se basa en la hipótesis

de rigidez in�nita de la estru
tura y que permite obtener la respuesta de la misma siguiendo un

pro
edimiento dividido en tres pasos [KR74, KWME78℄: i) obten
ión de los fa
tores de inter-

a

ión 
inemáti
a; ii) obten
ión de los 
oe�
ientes de rigidez y amortiguamiento; y �nalmente

iii) estima
ión de la respuesta iner
ial (ver �gura 3.6).
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Otra alternativa es el uso de los método dire
tos, los 
uales son 
apa
es de modelar simultánea-

mente el terreno y la estru
tura. Por tanto permiten tener en 
uenta de manera más rigurosa

la intera

ión entre los diferentes elementos. Se ha usado 
omo té
ni
a numéri
a para este

ejemplo el método de elementos de 
ontorno, 
uya formula
ión ha sido presentada previamente

en el 
apítulo anterior, y 
uyas 
ara
terísti
as para tratar el análisis dinámi
o de regiones no

a
otadas, 
omo son los estratos del terreno, ha
en re
omendable su apli
a
ión para el problema

que se presenta.

Cuando se apli
a el método de los tres pasos, habitualmente se usan expresiones simpli�
adas

existentes en la bibliografía para estimar los fa
tores de intera

ión 
inemáti
a y las fun
iones

de impedan
ia [MNG06, KWME78, Aba84℄. Estas aproxima
iones están disponibles para gran

variedad de problemas en fun
ión del grado de embebimiento y las propiedades del terreno. Sin

embargo, no hay disponibles expresiones lo su�
ientemente pre
isas para el per�l del terreno de

este problema. Es por ello que el método de elementos de 
ontorno se ha usado también para

estable
er los 
oe�
ientes de intera

ión 
inemáti
a y las impedan
ias del terreno, lo 
ual se


orresponde respe
tivamente 
on los pasos primero y segundo del método de subestru
tura
ión.

Usando el método de elementos de 
ontorno para resolver el problema siguiendo una apro-

xima
ión dire
ta, o para obtener los fa
tores de intera

ión 
inemáti
a e impedan
ias en el


aso de apli
ar subestru
tura
ión, todos los dominios que de�nen la geometría del problema

(estratos y muros de hormigón) se modelan 
omo regiones lineales, homogéneas, isótropas y

lineales asumiendo 
ondi
iones soldadas entre los diferentes dominios. Las �guras 3.7 y 3.16

muestran respe
tivamente las mallas de elementos de 
ontorno usadas para los problemas de

subestru
tura
ión (pasos 1 y 2) y la aproxima
ión dire
ta. Se apre
ia que el 
ódigo permite el

uso de elementos 
uadráti
os triangulares (6 nodos) y 
uadriláteros (9 nodos). Esta geometría

en parti
ular presenta problemas de esquina, los 
uales son resueltos por medio de la estrategia

de 
olo
a
ión no nodal [Dom93, Azn02℄ que permite además el uso de mallas no 
onformes.

El tamaño de los elementos debe ser más pequeño que la mitad de la longitud de onda a la

mayor fre
uen
ia (25 Hz) según 
ada región del problema, aunque en general, los parámetros

de la malla, 
omo son el número de elementos y la extensión de la super�
ie libre, han sido

�jados a través de la 
onvergen
ia, para diferentes mallas, de las variables de interés. Desta
ar

también que aunque en las �guras se muestre tres 
uartos de la geometría, solo es ne
esario

dis
retizar un 
uarto de la geometría total, ya que el 
ódigo es 
apaz de tener en 
uenta las

propiedades de simetría del problema. Los detalles del 
ódigo de elementos de 
ontorno usado

puede 
onsultarse en [MAD02, MAD04, MAG05℄.

Los dos siguientes subapartados muestran respe
tivamente los fa
tores de intera

ión 
inemáti-


a y las impedan
ias del terreno. Estos resultados serán utilizados posteriormente en el subapar-

tado 3.6 para obtener la respuesta dinámi
a de la estru
tura resolviendo el paso de intera

ión

iner
ial del men
ionado método de subestru
tura
ión. Finalmente, en el subapartado 3.7, se

resuelve el problema siguiendo el método dire
to de manera que se modelan simultáneamente

todas las regiones y se presentan los resultados 
omparados 
on los obtenidos 
on el método

de los tres pasos.

3.4 Intera

ión 
inemáti
a

Suponiendo una onda de tipo S 
on in
iden
ia verti
al 
omo ex
ita
ión, se han 
al
ulado los

desplazamientos y giros de la estru
tura 
onsiderando ésta in�nitamente rígida y sin masa.

La resolu
ión de este tipo de problema es bien 
ono
ida [Roe77℄, así 
omo su aproxima
ión

mediante el método de elementos de 
ontorno [Dom93, ÁRBSSA05℄. La �gura 3.7 muestra la

malla de elementos de 
ontorno usada. La super�
ie libre y las interfases entre estratos están
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ión 
inemáti
a

señaladas 
on diferentes 
olores. La interfase rígida entre el terreno y la estru
tura se muestra


oloreada en rojo.

Figura 3.7: Malla de elementos de 
ontorno usada para los problemas de intera

ión 
inemáti
a

y de impedan
ias

En la �gura 3.8 se presentan los valores absolutos de los fa
tores de intera

ión 
inemáti
a en

términos de trasla
iones Iu = u/uff y rota
iones IΦ = θ R/uff, siendo u y θ el desplazamiento

horizontal y el giro de la base de la estru
tura, R el radio y uff el desplazamiento horizontal de

la super�
ie libre del terreno. El eje horizontal de las grá�
as mide la fre
uen
ia adimensional

ao = ω R/cS, siendo ω la fre
uen
ia de la ex
ita
ión y cS la velo
idad de propaga
ión de la

onda en el estrato superior (500 m/s). Los resultados obtenidos 
on el método de elementos de


ontorno se presentan junto 
on las fun
iones de transferen
ia 
al
uladas 
on las expresiones

propuestas por [EMR77℄ para suelos homogéneos (ver también [KWME78, MNG06℄). Se observa

que la 
on
ordan
ia es buena entre ambos a fre
uen
ias bajas y altas, mientras que se apre
ian

diferen
ias entre los valores 0.4 y 2.0 de fre
uen
ia adimensional. Estas diferen
ias suponen un

impa
to signi�
ativo en la evalua
ión sísmi
a debido que los elementos 
lave hospedados en

la estru
tura tienen su fre
uen
ia fundamental dentro de este rango. Es por ello que sólo los

fa
tores de intera

ión 
inemáti
a 
al
ulados a través del método de elementos de 
ontorno

serán utilizados en el apartado 3.6.
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ex
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on in
iden
ia verti
al.
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3.5 Muelles y amortiguadores equivalentes. Impedan
ias del

terreno

El segundo paso en el método subestru
tura
ión es la obten
ión de las impedan
ias del terreno

(ver �gura 3.6). Existen en la bibliografía fun
iones de impedan
ia para una amplia variedad

de 
asos [Wol85, Dom93, MNG06℄. Sin embargo, para esta 
on�gura
ión en parti
ular no

están disponibles tales fun
iones. Es por ello que los 
oe�
ientes de rigidez y amortiguamiento

horizontales y de giro han sido obtenidos usando el ya men
ionado 
ódigo de elementos de


ontorno, 
onsiderando un movimiento pres
rito de la interfase entre la estru
tura y el terreno

en forma de desplazamientos horizontales o giros, ambos unitarios y armóni
os. Para 
ada

fre
uen
ia se obtienen las impedan
ias por integra
ión de las tensiones en la interfase. Debido a

que el giro de la estru
tura produ
e tensiones horizontales en las paredes del 
ilindro, y de manera

re
ípro
a, desplazamientos horizontales produ
en un momento en la base, las impedan
ias

horizontales y de giro están a
opladas. El término de a
oplamiento gana mayor importan
ia


uanto más profunda es la longitud de embebimiento de la estru
tura.

Las fun
iones de impedan
ia pueden ordenarse en una matriz de rigidez K, la 
ual rela
iona el

ve
tor de fuerzas F apli
adas en el 
entro de la base 
on el ve
tor de movimiento u de la forma

F = Ku y que puede ser es
rita 
omo:

{
F

M

}
=

[
Kxx Kxθ

Kθ x Kθ θ

]{
u

θ

}
(3.1)

donde 
ada término Klm depende de la fre
uen
ia adimensional ao y representa la fuerza (o el

momento) apli
ado en la base de la estru
tura ne
esario para obtener un desplazamiento (o

giro) unitario. Como las fuerzas y los momentos están desfasados, los términos Klm son valores


omplejos de la forma:

Klm = klm + iao clm (3.2)

siendo klm y clm los 
oe�
ientes de rigidez y amortiguamiento respe
tivamente.

La �gura 3.9 muestra las fun
iones de los 
oe�
ientes de rigidez y amortiguamiento, obtenidas


on la dis
retiza
ión mostrada en la �gura 3.7, y normalizadas usando el módulo de rigidez

transversal del estrato superior y el radio de la parte enterrada de la estru
tura. Un he
ho a

desta
ar es que las fre
uen
ias de resonan
ia aso
iadas a la deforma
ión transversal en los dos

estratos superiores no se apre
ian en estas fun
iones de impedan
ia. Esto se debe al he
ho

de que los modos transversales rela
ionados 
on di
has fre
uen
ias no son ex
itados porque la

parte enterrada traspasa los estratos y no produ
e ondas verti
ales de tipo S signi�
ativas.

3.6 Intera

ión iner
ial. Respuesta dinámi
a de la estru
tura

Una vez obtenidos los fa
tores de intera

ión 
inemáti
a y las fun
iones de impedan
ias, se

puede obtener la respuesta dinámi
a de la estru
tura en un ter
er paso bajo la hipótesis de rigidez

in�nita de ésta. Así, las e
ua
iones para un 
uerpo rígido que gobiernan el 
omportamiento

dinámi
o de la estru
tura pueden es
ribirse en el dominio de la fre
uen
ia 
omo:
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Figura 3.9: Coe�
ientes de rigidez y amortiguamiento para el 
aso horizontal y de giro

[
Kxx −ω2 M Kxθ +ω2 Mhg

Kxx hg +Kθ x Kxθ hg +Kθ θ −ω2 Ig

][
u

θ

]
=

[
Kxx Kxθ

Kxx hg +Kθ x Kxθ hg +Kθ θ

][
uki

θki

] (3.3)

donde u y θ son respe
tivamente el desplazamiento horizontal y el giro de la base de la estru
-

tura; uki y θki representan el desplazamiento horizontal y el giro debido a la ex
ita
ión sísmi
a

y han sido obtenidos de los fa
tores de intera

ión 
inemáti
a. hg es la altura del 
entro de

gravedad de la estru
tura medida desde la base (ver �gura 3.1). El sistema de e
ua
iones 3.3

se resuelve numéri
amente para 
ada fre
uen
ia obteniéndose así la respuesta de la estru
tura


omo un 
uerpo rígido en términos del desplazamiento horizontal u y el giro θ . El 
oste de

resolver di
ho sistema, una vez obtenidos los fa
tores de intera

ión 
inemáti
a y las fun
iones

de impedan
ia, es muy bajo. Este he
ho permite realizar análisis paramétri
os y estudiar, a bajo


oste, la in�uen
ia de los diferentes aspe
tos en la respuesta �nal, siendo una de las ventajas

de utilizar el método de los tres pasos.

La �gura 3.10 muestra la respuesta dinámi
a de la estru
tura, obtenida ha
iendo uso del método

de subestru
tura
ión, en fun
ión de la fre
uen
ia adimensional ao. Se representan también los

fa
tores de intera

ión 
inemáti
a del desplazamiento horizontal, obtenidos en el apartado 3.4,


on el �n de determinar la importan
ia relativa de la intera

ión 
inemáti
a y la intera

ión iner-


ial en la respuesta �nal del sistema. En ambos 
asos, las fun
iones de transferen
ia rela
ionan

el desplazamiento horizontal u del punto 
onsiderado de la estru
tura 
on el desplazamiento de


ampo libre en la super�
ie libre uff. Bajo la hipótesis de rigidez in�nita, los desplazamientos

en 
ualquier punto de la estru
tura pueden ser obtenidos fá
ilmente, por lo que se muestran

resultados para 6 valores distintos de profundidad. Por lo mostrado en la �gura 3.10, se observa

que la presen
ia de la estru
tura �ltra una parte importante de la señal sísmi
a, prin
ipalmente

para valores de fre
uen
ia adimensional ao ≥ 2.

Para ilustrar los efe
tos del �ltrado, la �gura 3.11 muestra lo registros de las a
elera
iones

evaluados al nivel de la super�
ie libre (+0.0 m) y a la 
ota de la base de la estru
tura

(−50.0 m) 
uando el sistema es ex
itado por el primer a
elerograma de diseño (ver �gura 3.4).

Estos registros se obtuvieron 
omo la transformada inversa de Fourier del produ
to entre las

fun
iones de respuesta en fre
uen
ia del paso 3 (intera

ión iner
ial) y la transformada dis
reta

de Fourier del a
elerograma 1, usando para ello el algoritmo de la transformada rápida de Fourier.

El a
elerograma 1 de 
ampo libre se presenta también en la �gura 3.11 
omo referen
ia. Se

puede observar que la señal es �ltrada por la presen
ia de la estru
tura de manera que el pi
o de
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Figura 3.10: Fun
iones de respuesta en fre
uen
ia de los desplazamientos horizontales nor-

malizados del análisis iner
ial y los fa
tores de intera

ión 
inemáti
a para una onda S 
on

in
iden
ia verti
al

a
elera
ión se redu
e de 0.173 g a 0.087 g (∼ −50%) a la profundidad de −50.0 m, mientras

que la rota
ión que se indu
e por el 
ampo de ondas in
idente aumenta el pi
o de a
elera
ión

hasta 0.114 g a la 
ota de super�
ie libre (+0.0 m). Éste último valor de a
elera
ión es un

35% menor que el pi
o de a
elera
ión de la señal sísmi
a en 
ampo libre.

A partir de estas señales �ltradas se pueden obtener los espe
tros de repuesta elásti
os a dife-

rentes profundidades 
omo la ex
ita
ión que sufren sistemas de un grado de libertad 
olo
ados

a di
has profundidades. En la �gura 3.12 se presentan los espe
tros de respuesta en términos de

pseudo�a
elera
iones 
orrespondientes a la respuesta obtenida a partir de la intera

ión iner
ial

(paso 3) junto 
on la obtenida de la intera

ión 
inemáti
a (paso 1) a diferentes profundidades.

También se muestran en todas las grá�
as de la �gura el espe
tro de respuesta de diseño y

los 
orrespondientes a las señales sísmi
as de 
ampo libre a 
ota de la super�
ie libre (0.0 m).

Todos los resultados en esta �gura se muestran 
omo envolventes que in
luyen los espe
tros

de los tres a
elerogramas presentados en la �gura 3.4.

Las �guras 3.10 y 3.12 muestran gran 
on
ordan
ia entre los resultados obtenidos del paso 3

(intera

ión iner
ial) o dire
tamente del paso 1 (intera

ión 
inemáti
a), lo que signi�
a que la
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Figura 3.11: Respuesta estru
tural a diferentes profundidades de a
uerdo a la solu
ión obtenida


on el método de los tres pasos y para el a
elerograma 1

intera

ión 
inemáti
a domina la respuesta dinámi
a de esta estru
tura. Para entender mejor

este efe
to, la e
ua
ión 3.3 se puede rees
ribir 
on u = uki + ū, siendo uki el ve
tor de des-

plazamientos y rota
iones de la base de la 
imenta
ión rígida para el problema de intera

ión


inemáti
a y ū el ve
tor de desplazamientos y giros relativos entre el terreno y la estru
tura. Este

movimiento relativo, responsable de las diferen
ias entre las intera

iones iner
ial y 
inemáti
a,

es relativamente pequeño en el rango de fre
uen
ia de interés. Además está estre
hamente

rela
ionado 
on las propiedades de amortiguamiento del sistema, las 
uales pueden ser estu-

diadas en términos de los fa
tores de amortiguamiento ζ . Tanto el fa
tor de amortiguamiento

horizontal 
omo el de rota
ión pueden ser estimados a partir de las 
orrespondientes fun
iones

de impedan
ia 
omo

ζx =
c̃xx

2
√

Mkxx

; c̃xx =
R

cS1

cxx (3.4)

ζθ =
c̃θ θ

2

√
(Ig +Mh2

g)kθ θ

; c̃θ θ =
R

cS1

cθ θ (3.5)

En la �gura 3.13, donde se representan estos fa
tores de amortiguamiento frente a la fre
uen
ia

adimensional. Se observa que la vibra
ión horizontal está sobreamortiguada mientras que la

vibra
ión de giro está inframortiguada para ao < 2. Esto puede dar expli
a
ión al he
ho de que

la respuesta esté dominada por la intera

ión 
inemáti
a, y también a las mayores diferen
ias

que se observan en puntos a 
otas 
er
anas a la super�
ie libre, donde el efe
to del giro de la

estru
tura tiene mayor importan
ia.

El he
ho de que la intera

ión iner
ial y la intera

ión 
inemáti
a sean tan pare
idas es intere-

sante, ya que puede impli
ar en 
iertos 
asos que la intera

ión 
inemáti
a puede ser por sí

misma una buena aproxima
ión de la respuesta estru
tural, pudiendo evitarse el 
ál
ulo de las

fun
iones de impedan
ia y la intera

ión iner
ial. A 
ontinua
ión se estudia de manera somera
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Figura 3.12: Envolventes de las respuestas espe
trales en términos de pseudo�a
elera
iones a

diferentes profundidades

los fa
tores 
lave que determinan si esta simpli�
a
ión puede llevarse a 
abo.

Con el �n de averiguar la importan
ia de algunos parámetros, y teniendo en 
uenta que las

fun
iones de impedan
ia (ex
epto las de giro) son aproximadamente independientes de la fre-


uen
ia, se 
onsidera el mismo sistema pero tomando los valores rigidez y amortiguamiento

independientes de la fre
uen
ia. Di
hos valores 
onstantes de las impedan
ias son aquellos 
o-

rrespondientes al valor de ao = 0.74. Ésta es la fre
uen
ia 
entral en el rango 0 < ao < 1.5
de interés, y también la fre
uen
ia natural de uno de los dispositivos sensibles 
ontenidos

en la estru
tura. Para ao = 0.74 (≈ 3.89Hz), los valores de rigidez y amortiguamiento son:

kxx/µR = 39.0, kθ θ/µR3 = 104.2, kxθ/µR2 = −17.3, cxx/µR = 43.8, cθ θ/µR3 = 96.9 and

cxθ/µR2 =−49.6, siendo el valor de µ el 
orrespondiente al estrato superior. Las �guras 3.14 y

3.15 muestran respe
tivamente las fun
iones de respuesta en fre
uen
ia y los 
orrespondientes

espe
tros para di
hos valores de las impedan
ias. Se observa que en el rango de fre
uen
ias

de interés la respuesta del sistema es muy pare
ida a la obtenida para la intera

ión iner
ial


onsiderando las impedan
ias dependientes de la fre
uen
ia.

Para estudiar si los fa
tores de amortiguamiento son responsables de que la respuesta dinámi
a
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3.6 Intera

ión iner
ial. Respuesta dinámi
a de la estru
tura

 0

 0.5

 1

 1.5

 0  1  2  3  4  5

D
am

p
in

g
 f

ac
to

r

Dimensionless frequency (ao)

ζx

ζθ

Figura 3.13: Fa
tores de amortiguamiento para los modos horizontal y de 
abe
eo
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Figura 3.14: Fun
iones de respuesta en fre
uen
ia para diferentes fa
tores de amortiguamiento

(izquierda) y diferentes fre
uen
ias naturales (dere
ha)

del sistema esté dominada por las fa
tores de intera

ión 
inemáti
a, se ha realizado un estudio

paramétri
o. La grá�
a a la izquierda en la �gura 3.14 presenta las fun
iones de respuesta en

fre
uen
ia 
uando el 
oe�
iente de amortiguamiento ha sido modi�
ado arti�
ialmente multi-

pli
ando por los valores 3 y 1/3. Los 
orrespondientes espe
tros de respuesta en a
elera
iones

se pueden ver en la grá�
a de la izquierda en la �gura 3.15. Como se podía esperar, 
uando los

fa
tores de amortiguamiento son mu
ho más pequeños que la unidad la respuesta del sistema

es visiblemente diferente a la obtenida 
onsiderando sólo los fa
tores de intera

ión 
inemáti-


a. Por el 
ontrario, para grandes valores de los fa
tores de amortiguamiento, la respuesta se

aproxima mu
ho a ésta.

Al margen del peso del fa
tor de amortiguamiento, las fre
uen
ias naturales tienen una fuerte

in�uen
ia en la respuesta dinámi
a del sistema. La tabla 3.2 resume las fre
uen
ias naturales no

amortiguadas del sistema 
uando la matriz de rigidez es la 
orrespondiente a la fre
uen
ia ao =
0.74. También se muestran tres 
ombina
iones adi
ionales en las 
uales las rigide
es horizontal y

de giro son multipli
adas, alternativa o simultáneamente, por 10 para in
rementar arti�
ialmente

las fre
uen
ias naturales del sistema de manera que estén fuera del rango de fre
uen
ias que


ontiene la mayor parte de la energía de los a
elerogramas de diseño (0 < ao < 1.5). Nótese
que para la 
on�gura
ión original y 
uando sólo la rigidez horizontal está multipli
ada por 10 la

primera fre
uen
ia natural está dentro de este rango. Por el 
ontrario, 
uando la rigidez de giro

aumenta ambas fre
uen
ias naturales son mayores que el límite superior del rango. Los efe
tos

de estos 
ambios se re�ejan en las grá�
as a la dere
ha en las �guras 3.14 y 3.15, que presentan
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Figura 3.15: Envolventes de las respuestas espe
trales en términos de pseudo�a
elera
iones para

diferentes fa
tores de amortiguamiento (izquierda) y diferentes fre
uen
ias naturales (dere
ha)

Tabla 3.2: Fre
uen
ias naturales del sistema para diferentes 
on�gura
iones

ao1
[ f1(Hz)] ao2

[ f2(Hz)]

kxx, kθ θ 1.3 [7.0] 3.2 [17.0]
kxx, 10kθ θ 2.0 [10.6] 7.0 [37.0]
10kxx, kθ θ 1.4 [7.3] 10.2 [53.9]
10kxx, 10kθ θ 3.8 [20.4] 11.4 [60.6]

respe
tivamente las fun
iones de respuesta en fre
uen
ia y los espe
tros de respuesta, en los


uales se han mantenido 
onstantes de manera premeditada los fa
tores de amortiguamiento

ζx y ζθ . Se puede ver que 
uando se aumenta arti�
ialmente sólo la rigidez horizontal la

respuesta iner
ial del sistema permane
e 
asi invariable, sin embargo 
uando la rigidez a giro

se in
rementa la respuesta se a
er
a mu
ho a la del problema de intera

ión 
inemáti
a. Esto

es debido al he
ho de que 
uando la rigidez horizontal se in
rementa la primera fre
uen
ia

natural se ve modi�
ada muy ligeramente y la rota
ión de la estru
tura (
on gran in�uen
ia en

el movimiento a +0.0 m) no se altera signi�
ativamente. Se 
on
luye que es el 
omportamiento

a giro del sistema suelo�estru
tura el que domina la respuesta dinámi
a �nal.

3.7 Método dire
to. Estru
tura �exible

Se ha di
ho anteriormente que la aproxima
ión por el método de los tres pasos impli
a la


onsidera
ión de rigidez in�nita de la estru
tura. Por 
ontra, el uso de un método dire
to

permite un análisis más riguroso para obtener la respuesta del sistema sometido a la ex
ita
ión

sísmi
a teniendo además en 
uenta la verdadera �exibilidad de la estru
tura. En este 
aso, el

terreno y la estru
tura son analizados simultáneamente bajo la a

ión de un 
ampo de ondas

S 
on in
iden
ia verti
al usando el 
ódigo basado en el método de elementos de 
ontorno

presentado 
on anterioridad y usando la malla mostrada en la �gura 3.16.

La �gura 3.17 muestra las fun
iones de respuesta en fre
uen
ia del desplazamiento horizontal

normalizado en puntos de la estru
tura a diferentes 
otas. Los resultados obtenidos de la

apli
a
ión del método dire
to teniendo en 
uenta la verdadera �exibilidad de la estru
tura se

han etiquetado en la leyenda 
omo 'Flexible model'. Los resultados 
orrespondientes al uso

de la aproxima
ión por el método de los tres pasos (ya presentados 
on anterioridad) tienen
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3.7 Método dire
to. Estru
tura �exible

Figura 3.16: Malla de elementos de 
ontorno usada para la aproxima
ión dire
ta. Estru
tura

�exible embebida en un terreno estrati�
ado.

la etiqueta 'Rigid model'. Junto 
on ellos se representan también los resultados obtenidos del

problema de intera

ión 
inemáti
a. En general, el he
ho asumir la hipótesis de que la estru
tura

se 
omporta 
omo un 
uerpo idealmente rígido produ
e resultados no satisfa
torios, aunque en

algunos 
asos, prin
ipalmente para fre
uen
ias altas y en puntos de la base de la estru
tura,

éstos si pueden ser a
eptables. Como era de esperar, los efe
tos de la verdadera �exibilidad de

la estru
tura se mani�estan de manera 
ada vez más importante 
on la altura. Las diferen
ias

más notables se produ
en en puntos 
er
anos a la super�
ie libre y para fre
uen
ias inferiores

a ao = 1.5, mientras que el rango de fre
uen
ias de interés teniendo en 
uenta el 
ontenido en

fre
uen
ias de los a
elerogramas de diseño sigue siendo 0 < ao < 1.5, lo que afe
ta 
asi a todo

el 
ontenido en fre
uen
ia de la señal de ex
ita
ión del suelo.

La in�uen
ia en la respuesta entre ambos modelos, rígido y �exible, en la respuesta sísmi
a

de la estru
tura se ha evaluado también en términos de los espe
tros elásti
os de respuesta.

La �gura 3.18 muestra di
hos espe
tros en términos de pseudo�a
elera
iones por medio de

envolventes que 
orresponden a los tres a
elerogramas de diseño utilizados. Se puede ver que

los espe
tros de respuesta para los modelos rígido y �exible son prá
ti
amente 
oin
identes en

la base de la estru
tura (-50.0 m), pero se apre
ian notables diferen
ias para resto de puntos.

En este sentido, in
luso a la 
ota de -33.5 m (puntos pertene
ientes a la parte ma
iza de la

estru
tura) las diferen
ias son grandes en el rango de periodos entre 0.1 y 0.25 s. En 
on
reto,

la respuesta obtenida 
on el modelo rígido es, para T = 0.17 s, igual a 0.18 g, y 
on el modelo

�exible se obtuvo un valor de 0.29 g (diferen
ia de aproximadamente el 60%).

La respuesta de la estru
tura al nivel de la super�
ie libre del terreno (+0.0 m) es espe
ial-

mente interesante. A di
ha 
ota y para periodos mayores a 0.2 s, la presen
ia de la estru
tura


onsiderando su verdadera �exibilidad no �ltra la señal sísmi
a de entrada, al 
ontrario que para

los resultados obtenidos bajo la hipótesis de rigidez in�nita. Por ejemplo para T = 0.26 s (
o-

rrespondiente a f = 3.86 Hz, una de las fre
uen
ias de interés) las a
elera
iones en el espe
tro

llegan a 0.32 g utilizando el modelo rígido y hasta 0.46 g 
uando se apli
a el modelo �exible,

lo que impli
a una diferen
ia del 44%.

La respuesta sísmi
a de la estru
tura puede 
onsiderarse 
omo la suma de tres 
omportamien-

tos: dos movimientos 
omo sólido rígido (giro y desplazamiento horizontal) presente en ambas

metodologías; y un ter
ero aso
iado solo al deforma
ión a �exión de la estru
tura. Los resul-

tados presentados en la �gura 3.18 dan a entender que la 
omponente 
orrespondiente a la
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Figura 3.17: Fun
iones de respuesta en fre
uen
ia del desplazamiento horizontal normalizado

para diferentes puntos de la restru
tura 
onsiderando 
omo ex
ita
ión una onda S 
on in
iden
ia

verti
al. Método de los tres pasos (rigid model) y método dire
to (�exible model)

deforma
ión no puede ser re
hazada en este problema en parti
ular, in
luso tratándose de una

estru
tura po
o esbelta y 
on un gran fa
tor de embebimiento [EMR77, SW04℄. Por tanto, la

hipótesis de rigidez in�nita no es válida en este 
aso.

Del análisis y 
ompara
ión de los resultados obtenidos 
on ambos modelos en términos de

a
elera
iones máximas y tensiones normales a lo largo de la parte embebida de la estru
tura,

se llega a las mismas 
on
lusiones. Las a
elera
iones máximas se muestran en la �gura 3.19,

normalizadas 
on el pi
o de a
elera
ión del terreno (PGA), mientras que el pi
o de las tensiones

normales se representan en la �gura 3.20, ambas para el a
elerograma de diseño 1. Para ambos

modelos, las tensiones han sido obtenidas 
on el método de elementos de 
ontorno ha
iendo uso

de propiedades 
oherentes para 
ada uno. Esto último quiere de
ir que en el 
aso del modelo

�exible ('Flexible model') se han usado las propiedades de rigidez reales de la estru
tura y para

el modelo rígido ('Rigid model') se han usado propiedades de rigidez �
ti
ias que le 
on�eren

un 
omportamiento de sólido rígido. Se observa que los resultados obtenidos 
onsiderando la

estru
tura 
omo un sólido rígido subestiman las a
elera
iones máximas hasta en un 25%. En


uanto a las tensiones normales, la �exibilidad de la estru
tura impli
a una relaja
ión signi�
ativa
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Figura 3.18: Espe
tros de respuesta en términos de pseudo�a
elera
iones a diferentes profun-

didades obtenidos usando la metodología dire
ta (�exible model) y el método de los tres pasos

(rigid model)

de las mismas a lo largo de la interfase entre el terreno y la estru
tura.

3.8 Con
lusiones

Se ha realizado el análisis sísmi
o de una estru
tura po
o esbelta y 
on una gran por
ión de

embebimiento 
on el �n de determinar el 
omportamiento de algunos dispositivos de importan
ia

alojados en ella. Este 
omportamiento frente a una a

ión sísmi
a ha sido obtenido en puntos

de la estru
tura a diferentes 
otas en términos de las fun
iones de respuesta en fre
uen
ia de

los desplazamientos y de los espe
tros de respuesta elásti
a para las a
elera
iones. El prin
ipal

objetivo del estudio de esta estru
tura es determinar si la 
onsidera
ión de rigidez in�nita de la

misma para el análisis de su respuesta permite obtener resultados válidos.

Para tal �n, se ha estudiado la respuesta sísmi
a de la estru
tura usando por un lado un método

de subestru
tura
ión (método de los tres pasos) y por otro una metodología dire
ta. Ambas
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Figura 3.20: Valida
ión de la hipótesis de rigidez de la estru
tura. Tensiones normales máximas


on la profundidad para el a
elerograma 1. Onda S 
on in
iden
ia verti
al.

metodologías son 
apa
es de tener en 
uenta la intera

ión suelo�estru
tura, fenómeno de gran

importan
ia en este tipo de problemas, pero 
on la diferen
ia de que el método de los tres pasos

ne
esita 
onsiderar la estru
tura 
omo un sólido in�nitamente rígido, mientras que el método

dire
to permite 
onsiderar su verdadera �exibilidad.

Para el 
aso prá
ti
o estudiado, la respuesta obtenida 
on ambos métodos muestra notables

dis
repan
ias. La 
onsidera
ión de la estru
tura 
on 
omportamiento de sólido rígido arroja

resultados que infravaloran las a
elera
iones en puntos a diferentes 
otas, 
on diferen
ias de

hasta el 60%, lo que impli
a que la deforma
ión a �exión no debe ser obviada en este problema

en parti
ular, y por tanto, ésta no debe ser 
onsiderada 
omo in�nitamente rígida.

Además, se ha mostrado que el análisis realizado por subestru
tura
ión ha resultado útil para

estudiar el papel de los fa
tores de amortiguamiento y la rigidez a giro en la respuesta sísmi
a

de la estru
tura. Cuando el valor de los fa
tores de amortiguamiento es grande la intera

ión


inemáti
a determina en gran medida la estima
ión de la respuesta estru
tural hasta el punto

de que in
luso podría ser usada 
omo una buena aproxima
ión de la respuesta iner
ial. Esta

aproxima
ión es in
luso mejor si las fre
uen
ias naturales del sistema no se en
uentran dentro

del rango del 
ontenido en fre
uen
ia de mayor importan
ia de la ex
ita
ión.

El problema estudiado aquí y las 
on
lusiones obtenidas del mismo ponen de mani�esto que

la ele

ión de la metodología de 
ál
ulo para estos problemas 
lási
os de intera

ión suelo�

estru
tura supone un asunto al que debe prestarse la debida aten
ión. Al mismo tiempo, que

la evalua
ión pre
isa de la rigidez de la estru
tura es determinante en estos problemas. En el
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3.8 Con
lusiones


apítulo próximo se desarrolla una metodología que permite la evalua
ión dire
ta a
oplada (sin

ne
esidad de emplear subestru
tura
ión) para problemas que in
orporan regiones que por su

naturaleza pueden 
onsiderarse rígidas, a
opladas 
on suelos (vis
oelásti
os o poroelásti
os) en

los que se en
uentran alojadas.

73



3 Caso prá
ti
o de estudio. Importan
ia de la rigidez estru
tural

74



Modelo para el estudio de la

in�uen
ia de la �exibilidad en la

respuesta sísmi
a de estru
turas

enterradas po
o esbeltas

Capítulo4

4.1 Introdu

ión

De las 
on
lusiones del 
aso prá
ti
o estudiado en el Capítulo 3, pare
e derivarse la ne
esidad

de abordar un estudio que permita estable
er un mar
o de 
riterios prá
ti
os para 
alibrar la

importan
ia de la 
onsidera
ión de la verdadera �exibilidad de una estru
tura enterrada en la

determina
ión de su respuesta sísmi
a. Más aún teniendo en 
uenta que en la bibliografía 
on-

sultada no existen estudios similares y sólo algunas 
lasi�
a
iones o re
omenda
iones de 
ará
ter

general, po
o pre
isas y no justi�
adas que estable
en un rango de esbelte
es para el 
ompor-

tamiento rígido o �exible de este tipo de estru
turas (ver p.e. Gerolymos y Gazetas [GG06℄ ó

Varun et al. [VAG09℄). Sí es 
ierto que pueden 
onsultarse algunos trabajos en esta línea pero


entrados en el problema de impedan
ias (Mylonakis [Myl01a℄ ó Saitoh y Watanabe [SW04℄).

Se pretende en este 
apítulo presentar y desarrollar un estudio paramétri
o sobre este aspe
to

del problema. De forma 
on
reta, el objetivo será 
uanti�
ar el error 
ometido en la obten
ión

de la respuesta sísmi
a de la estru
tura si se ha
e uso de un modelo que 
onsidere a di
ha

estru
tura 
omo un sólido in�nítamente rígido. Se 
onsigue 
on ello presentar un 
riterio de

utilidad para la prá
ti
a ingenieril en el ámbito. Así, dependiendo de la geometría de la es-

tru
tura, sus propiedades me
áni
as y las propiedades del suelo en el que está enterrada, será

posible estable
er un orden de magnitud de los errores 
ometidos al utilizar resultados obteni-

dos utilizando modelos simples y 
urvas de respuesta bien estable
idas para estru
turas que se


omportan 
omo sólidos rígidos (Elsabee et al. [EMR77℄) o bien, la ne
esidad de a
udir a otras

té
ni
as más so�sti
adas y que representen el problema 
on mayor rigor físi
o.

Ya en rela
ión 
on la tarea propuesta, la ne
esidad de obtener la respuesta para una importante


antidad de 
asos diferentes obliga a replantearse la herramienta de 
ál
ulo utilizada en el


apítulo anterior por otra algo menos 
ostosa 
omputa
ionalmente. En la bibliografía existen

modelos simpli�
ados que permiten evaluar la respuesta dinámi
a de este tipo de estru
turas

de forma sen
illa. Una de estas familias la 
onstituyen los llamados modelos tipo Winkler, y

sus variantes. Estos modelos están muy extendidos, y son sen
illos de formular y resolver. La

resolu
ión de las e
ua
iones a que 
ondu
en puede abordarse numéri
amente mediante el uso
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4 Modelo para el análisis sísmi
o de estru
turas enterradas po
o esbeltas

de elementos �nitos sen
illos tipo viga o, dependiendo de la 
omplejidad del modelo y problema,

mediante la obten
ión dire
ta de la solu
ión analíti
a a di
has e
ua
iones.

En lo que se re�ere a los 
ontenidos del 
apítulo, después de esta introdu

ión se estable
erá

primero el mar
o del estudio propuesto (parámetros relevantes) y las variables a estudiar en

rela
ión 
on la respuesta estru
tural. Posteriormente, se des
ribe la metodología empleada para

el 
ál
ulo de di
ha respuesta y se detallan las 
ara
terísti
as del modelo Winkler propuesto,

su formula
ión y su resolu
ión. Se �naliza 
on la dis
usión de los resultados y las 
on
lusiones

relevantes.

4.2 De�ni
ión del problema. Des
rip
ión del análisis paramé-

tri
o propuesto

El problema sobre el que se plantea este estudio paramétri
o se muestra en la Figura 4.1. Como

puede observarse, se han adoptado algunas simpli�
a
iones respe
to del problema des
rito en

el Capítulo 3. Estas simpli�
a
iones permitirán a
otar el ámbito de este análisis a una extensión

razonable: 1.- La estru
tura enterrada es de se

ión transversal 
onstante (ma
iza o hue
a) en

toda su profundidad, 2.- la se

ión superior de la misma se en
uentra enrasada 
on la super�
ie

libre del terreno y 3.- Este terreno es un semiespa
io homogéneo. También, 
omo en el problema

previo, el estudio se realiza en la hipótesis de 
omportamiento elásti
o y lineal del modelo, y

donde suelo y estru
tura se 
onsideran homogéneos e isótropos. Las propiedades me
áni
as,

iner
ia y dimensiones relevantes también se indi
an en la Figura 4.1: módulo de Young (E,

Es), 
oe�
iente de Poisson (ν , νs) y densidad (ρ , ρs) para estru
tura y suelo respe
tivamente;

diámetros exterior D e interior Di de la estru
tura (siendo su rela
ión δ = Di/D); y profundidad

de enterramiento L de la estru
tura. La ex
ita
ión sísmi
a estará 
onstituida por ondas de


orte 
on in
iden
ia verti
al y que sólo produ
en desplazamientos horizontales en los puntos del

semiespa
io para el problema de 
ampo libre. Esta ex
ita
ión provo
a un 
ampo de a
elera
iones


ompatible 
on un espe
tro de respuesta en la super�
ie, que será de�nido 
onvenientemente

en lo que sigue.

Seismi
 ex
itation

üg

Soil

(homogeneous

half-spa
e)

(Es,νs,ρs)

L
Stru
ture

(E,ν ,ρ)

Di

D

Figura 4.1: Problema estudiado. Estru
tura (ma
iza o hue
a) enterrada en un semiespa
io

homogéneo. Ex
ita
ión sísmi
a de ondas transversales 
on in
iden
ia verti
al

Como se ha 
omentado ya en la introdu

ión de este 
apítulo, la respuesta sísmi
a del sistema

dependerá prin
ipalmente de la �exibilidad de la estru
tura enterrada (parámetro que a su vez

dependerá de si se trata de una 
onstru

ión masiva o hue
a, sus propiedades me
áni
as y

esbeltez L/D), de la rigidez del terreno y de la variabilidad del 
ampo in
idente a lo largo de
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4.2 De�ni
ión del problema. Des
rip
ión del análisis paramétri
o propuesto

la profundidad de enterramiento. Tal y 
omo demostrarán los resultados que se mostrarán más

adelante, ese último aspe
to es determinante y está vin
ulado, no sólo a las 
ara
terísti
as de la

ex
ita
ión (
ontenido en fre
uen
ia), sino también a la velo
idad de propaga
ión de las ondas

en el suelo (y, por tanto, nuevamente 
on la rigidez del mismo).

Así, los parámetros sobre los que se apoyará este estudio serán:

Tipo de estru
tura (ma
iza o hue
a), δ

Velo
idad de propaga
ión de las ondas S en el suelo (cs).

Esbeltez de la estru
tura (L/D).

Profundidad de enterramiento de la estru
tura (L).

que, en el estudio paramétri
o presentado posteriormente, tomarán los siguientes valores:

δ = 0 y δ = 0.85. Para este primer parámetro sólo se adoptan 2 valores. δ = 0 
orresponde

al 
aso de una estru
tura enterrada ma
iza. δ = 0.85 se 
orresponde 
on una estru
tura

hue
a que, de apli
arlo al problema real estudiado en el Capítulo 3, 
ondu
e a un espesor

de pared de valor intermedio a los reales en ese problema.

cs = 200− 800m/s, rango que se 
orresponden 
on suelos tipos B y C de a
uerdo al

Euro
ódigo 8 [Eur03℄. En la Tabla 4.1 se detalla el ámbito del estudio en lo que a este

parámetro se re�ere.

L/D = 1−10

L = 5, 10, 20, 30, 40, 50 y 60m. Siete valores dis
retos muy próximos que permiten

a
otar bien la in�uen
ia de esta variable y entre 
uyos extremos se en
uentran la mayoría

de problemas reales de interés (ver p.e. Gerolymos y Gazetas [GG06℄, donde se rela
ionan

datos reales en el 
aso de 
imenta
iones tipo 
ajón para grandes puentes).

Tabla 4.1: Velo
idad de propaga
ión ondas S en el suelo. Rango adoptado para la realiza
ión

del estudio.

Tipo de suelo cs (m/s) Es (N/m
2
) E/Es

A

1500 1.024 ·1010 ∼ 3

800 2.912 ·109 ∼ 10

B

800 2.912 ·109 ∼ 10

360 5.897 ·108 ∼ 50

C

360 5.897 ·108 ∼ 50

180 1.474 ·108 ∼ 200

D < 180 < 1.474 ·108 > 200

Ámbito de es-

tudio (suelos

B y C)

A todo esto, y para 
entrar el estudio a lo relevante del problema que se aborda, algunas

propiedades del sistema se mantienen 
onstantes en todo el pro
eso. Así, la estru
tura se


onsidera fabri
ada de hormigón (E = 2.76 · 1010
N/m

2
, ν = 0.2, ρ = 2500kg/m

3
) y para el

suelo se adopta νs = 0.3 y ρs = 1570kg/m
3
. Estos valores son los tenidos en 
uenta para


al
ular y 
ompletar las variables re
ogidas en la Tabla 4.1.

En lo que a la ex
ita
ión se re�ere, ésta viene de�nida a través del espe
tro de respuesta

en super�
ie libre. También desde el Euro
ódigo 8 [Eur03℄, y para mayor simpli
idad, se ha
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0 ≤ T ≤ TB : Se(T ) = ag ·S · [1+(T/TB)(2.5η −1)]

TB ≤ T ≤ TC : Se(T ) = ag ·S ·2.5η

TC ≤ T ≤ TD : Se(T ) = ag ·S ·2.5η [(TC/T )]

S = 0.15 (Suelo tipo C)

ag = 0.17g

η = 1

β = 0.05

Figura 4.2: Ex
ita
ión sísmi
a. Espe
tro de respuesta de 
ampo libre en super�
ie. Suelo tipo

C, espe
tro tipo 1.

ε̄1

ε̄2

ε̄3

tramo 1 tramo 2 tramo 3

Figura 4.3: Espe
tros de respuesta en la estru
tura enterrada. Error promedio por tramos entre

las respuestas de los modelos de estru
tura rígida y �exible. TB = 0.2s. TC = 0.6s. TD = 2.0s.

adoptado un solo per�l 
omo representativo de los distintos tipos de suelo estudiados. Este será

el 
orrespondiente a terrenos Tipo C (espe
tros Tipo 1) (Figura 4.2).

En rela
ión 
on la variable utilizada para 
uanti�
ar la respuesta del modelo, ésta será el espe
tro

de respuesta a la 
ota de 
orona
ión de la estru
tura 
orrespondiente a un sistema de 1 g.d.l.


on la masa a nivel de esta 
ota (en la respuesta del mismo sólo in�uye el desplazamiento de la

estru
tura a ese nivel y no el giro de la se

ión). Para el rango de variabilidad de los parámetros

propuestos, se representará el error promedio entre los espe
tros de respuesta obtenidos bajo

las dos hipótesis objeto de estudio: 1.- aquella que 
onsidera la estru
tura 
omo un sólido

rígido ideal, Sr
e(T ), y 2.- aquella en la que la estru
tura es tenida en 
uenta 
on su verdadera

�exibilidad, S
f
e (T ). Este error promedio ε̄ j se de�ne 
omo

ε̄ j[%] =
1

n j

n j

∑
i

∣∣∣∣∣
S

f
e (Ti)−Sr

e(Ti)

Sr
e(Ti)

∣∣∣∣∣×100 (4.1)

y se 
al
ulará y representará independientemente en 
ada uno de los tres tramos relevantes del

espe
tro (tramo 1: 0.0 −TB; tramo 2: TB−TC; tramo 3: TC −TD), siendo en este 
aso TB = 0.2s,
TC = 0.6s y TD = 2.0s (ver Figura 4.3). Esto permitirá modular y 
lasi�
ar las 
on
lusiones del

análisis en fun
ión del rango del periodo para el que se obtiene la respuesta máxima a esa 
ota

debido a la presen
ia de la estru
tura y al modelo utilizado para representarla. Los resultados

presentados se trazan a partir de 20 puntos de evalua
ión (valores de periodo) para los tramos
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4.3 Metodología para el 
ál
ulo de la respuesta sísmi
a de la estru
tura

1 y 2, y 30 para el tramo 3, todos ellos igualmente espa
iados en el eje de periodos.

4.3 Metodología para el 
ál
ulo de la respuesta sísmi
a de la

estru
tura

La obten
ión de la respuesta de la estru
tura se realiza a través de un modelo lineal del problema

siguiendo el pro
edimiento ya utilizado para el estudio de problema prá
ti
o des
rito en el

Capítulo 3, a partir de la fun
ión de respuesta en fre
uen
ia del sistema y de la transformada

del a
elerograma 
ompatible 
on el espe
tro de respuesta de referen
ia. La diferen
ia está en

la metodología empleada para realizar el análisis del sistema en el dominio de la fre
uen
ia.

Teniendo en 
uenta el elevado número de 
asos a estudiar en este análisis paramétri
o, el modelo

de elementos de 
ontorno empleado enton
es para esta tarea resulta inviable. Por esta razón, y

sólo para este estudio, se propone la utiliza
ión de un modelo Winkler 
omún, menos 
ostoso (y

también menos riguroso), para obtener una solu
ión a
eptable para el �n propuesto. En este tipo

de modelos, la estru
tura se 
onsidera 
omo un elemento viga o un sólido rígido según el 
aso,

y la intera

ión 
on el terreno se tiene en 
uenta a través de elementos resorte�amortiguador

distribuidos a lo largo de la parte de la estru
tura que se en
uentra enterrada.

Este modelo Winkler está en la línea de otros previos (ver p.e. Kavvadas y Gazetas [KG93℄ o

Mylonakis [Myl01b℄) para el análisis dinámi
o de pilotes o 
imenta
iones rígidas (Gerolymos

y Gazetas [GG06℄). El elemento 
lave de este tipo de modelos está en la 
ara
teriza
ión de

los resortes y amortiguadores empleados para modelar la intera

ión 
on el suelo. Mu
hos son

los estudios que pueden 
onsultarse en rela
ión 
on los valores que deben utilizarse para estos

elementos. Sin inten
ión de realizar una revisión exhaustiva, estas referen
ias pueden 
lasi�
arse

en dos grupos en fun
ión del pro
edimiento utilizado para determinarlos: 1.-) aquellas que

ajustan estos parámetros a partir de modelos numéri
os que 
ontemplan la verdadera naturaleza

del problema (ver p.e. Kavvadas y Gazetas [KG93℄ o Makris [Mak94℄) y 2.-) los que proponen

valores a partir de modelos teóri
os de propaga
ión, siendo los más habituales aquellos basados

en los planteamientos de Novak�Baranov a partir de problemas elastodinámi
os de deforma
ión

plana a 
ada 
ota. En este último grupo se en
uadran las expresiones 
lási
as publi
adas para

estos resortes�amortiguadores por Novak et al. [NNAE78℄ y que serán las utilizadas en el modelo

aquí implementado. Si el le
tor está interesado en las distintas expresiones y estrategias (y sus

variantes) empleadas para esto, revisiones más detalladas de este asunto puede 
onsultarse en

los trabajos de Mylonakis [Myl01a, Myl01b℄ o Santana [San10℄.

A diferen
ia de los modelos Winkler habituales para este tipo de problemas, el implementado en

esta Tesis Do
toral para esta tarea utiliza un modelo de viga Timoshenko (Timoshenko [Tim21,

Tim22℄) para representar la estru
tura y 
on ello poder tratar ade
uadamente los valores más

bajos propuestos para la esbeltez. También se ha pro
edido a la evalua
ión de la pre
isión de

di
ho 
ódigo en una amplia gama de problemas, utilizando para ello el modelo a
oplado de

elementos de 
ontorno (Aznárez et al [ASPM09℄), 
on resultado muy a
eptable en todos los


asos.

4.4 Respuesta en fre
uen
ia de la estru
tura. Modelo simpli-

�
ado Winkler�Timoshenko

En esta se

ión se presenta el modelo utilizado en este 
apítulo para analizar la respuesta

dinámi
a de estru
turas enterradas po
o esbeltas. La �gura 4.4 ilustra los elementos prin
ipales
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a tener en 
uenta a la hora de desarrollar el modelo, 
onsiderando la estru
tura embebida en un

suelo vis
oelásti
o y homogéneo ex
itada por ondas in
identes tipo SH de in
iden
ia verti
al. La

�gura idealiza también la aproxima
ión que lleva al planteamiento de un modelo tipo Winkler

en el que la intera

ión de la estru
tura 
on el suelo 
ir
undante se modela a través de resortes

y amortiguadores que rela
ionan los desplazamientos horizontales del eje de la estru
tura a una

profundidad determinada u = u(z,ω) 
on los desplazamientos uI = uI(z,ω) de 
ampo lejano

produ
idos por el 
ampo in
idente en el suelo 
ir
undante.

a) b)Stru
ture

Soil

S waves

L

d

z

x

u f f = 1 u f f = 1

u f f (z)
u(z,ω)

kb
θ (ω)cb

θ (ω)

kb
x (ω)

cb
x (ω)

ks
x(ω)

cs
x(ω)

⇒

Figura 4.4: Problem de�nition

4.4.1 E
ua
ión de gobierno

Del estudio del equilibrio dinámi
o de una se

ión in�nitesimal de la estru
tura 
onsiderada


omo viga tipo Timoshenko (
onsiderando tanto la deforma
ión debida a la �exión 
omo al


ortante), se obtiene una e
ua
ión de gobierno de la viga del tipo

∂ 4u(z,ω)

∂ z4
=

(
q(z,ω)

EI
− 1

κµA

∂ 2q(z,ω)

∂ z2

)
(4.2)

donde z es la profundidad medida a partir de la super�
ie libre del suelo, ω es la fre
uen
ia de

la ex
ita
ión, κ es el fa
tor de 
ortadura de la se

ión estru
tural, E es el módulo de Young del

material de la estru
tura, m es la densidad lineal de la estru
tura, A e I son el área y la iner
ia

de la se

ión estru
tural, y donde se despre
ian los posibles efe
tos de amortiguamiento en la

estru
tura.

Por otro lado, q(z,ω) es la rea

ión que ejer
e el suelo sobre la estru
tura, y que tomando las

hipótesis de un modelo Winkler 
omo el representado en la �gura 4.4, toma la expresión:

q(z,ω) = (uI −u)Ks
x +mω2u (4.3)

donde Ks
x representa la impedan
ia horizontal 
on la que se modela la intera

ión suelo-

estru
tura a través de unos fa
tores de rigidez ks
x y amortiguamiento cs

x distribuidos de ma-

nera 
ontinua a lo largo de la profundidad de la estru
tura, que rela
ionan los desplazamientos

del eje de la estru
tura 
on los del 
ampo lejano. Así, la impedan
ia puede es
ribirse 
omo

Ks
x = ks

x + ics
x, siendo i la unidad imaginaria. Tal y 
omo se 
omentaba anterioremente, existen

múltiples posibilidades a la hora de de�nir los fa
tores ks
x y cs

x. En este trabajo se toman las

expresiones derivadas por Novak et al.[NNAE78℄ para las rea

iones de un medio in�nito ante

la vibra
ión armóni
a de un 
ilindro rígido en 
ondi
iones de deforma
ión plana:

Ks
x = ks

x + ics
x = µs[SR(ã0,νs,ξs)+ iSI(ã0,νs,ξs)] = πµsã

2
0T (4.4)
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4.4 Respuesta en fre
uen
ia de la estru
tura. Modelo simpli�
ado Winkler�Timoshenko

donde ã0 = ωd/2cs es la fre
uen
ia adimensional, cs =
√

µ/ρs es la velo
idad de propaga
ión

de las ondas de 
orte en el suelo, y T es un fa
tor adimensional 
on la siguiente expresión:

T =− 4K1(b
∗
0)K1(a

∗
0)+a∗0K1(b

∗
0)K0(a

∗
0)+b∗0K0(b

∗
0)K1(a

∗
0)

b∗0K0(b∗0)K1(a∗0)+a∗0K1(b∗0)K0(a∗0)+b∗0a∗0K0(b∗0)K0(a∗0)
(4.5)

siendo:

a∗0 =
ã0√

1+2ξsi

(4.6)

b∗0 =
ã0i

ψ
√

1+2ξsi

(4.7)

ψ =

√
2(1−νs)

1−2νs

(4.8)

y donde K0 y K1 son las fun
iones de Bessel modi�
adas de orden 0 y 1, y ξs es el fa
tor de

amortiguamiento histeréti
o en el suelo.

Considerando la 
oordenada verti
al adimensional ξ = z/L y asumiendo una estru
tura de

se

ión 
ir
ular ma
iza, la e
ua
ión de gobierno del problema (4.2) puede expresarse 
omo

∂ 4u

∂ξ 4
−α

∂ 2u

∂ξ 2
+βu =−γ

∂ 2uI

∂ξ 2
+ηuI (4.9)

donde los distintos parámetros que apare
en en la e
ua
ión se de�nen a 
ontinua
ión 
omo:

α =
4

πκ

1+ν

1+νs

Es

E

(
L

d

)2[
(SR + iSI)−π ã2

0

ρ

ρs

]
(4.10)

γ =
4

πκ

1+ν f

1+νs

Es

E

(
L

d

)2

(SR + iSi) (4.11)

β =
32

π

1

1+νs

Es

E

(
L

d

)4 [
(SR + iSI)−π ã2

0

ρ

ρs

]
(4.12)

η =
32

π

1

1+νs

Es

E

(
L

d

)4

(SR + iSI) (4.13)

4.4.2 De�ni
ión del 
ampo in
idente

El sistema se asume ex
itado por un tren armóni
o de ondas planas de 
orte de in
iden
ia verti
al

que se propagan desde z = ∞ por el semiespa
io vis
oelásti
o y que produ
en un desplazamiento

unitario u f f = 1eiωt
en la super�
ie del 
ampo libre (no perturbado por la presen
ia de la

estru
tura), de modo que el 
ampo in
idente en todo el dominio sigue la expresión:

uI(z,ω) =
1

2
[eikz + e−ikz] =

1

2
[eiΛξ + e−iΛξ ] (4.14)

donde k = ω/cs es el número de onda, y Λ = a0L/d puede entenderse 
omo un número de

onda adimensional, siendo a0 = 2ã0 = ωd/cs una fre
uen
ia adimensional. En este punto, es

importante resaltar que cs es una magnitud imaginaria 
on una 
omponente rela
ionada 
on el

fa
tor de amortiguamiento histeréti
o en el suelo, de manera que cs = Re[cs]
√

1+2iξs.
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4.4.3 Solu
ión general del 
ampo de desplazamientos

La expresión general del 
ampo de desplazamientos horizontales del eje de la estru
tura que

satisfa
e la e
ua
ión 4.9 es de la forma:

u(ξ ,a0)

u f f

=C1eS1ξ +C2eS2ξ +C3eS3ξ +C4eS4ξ +Cp(e
iΛξ + e−iΛξ ) (4.15)

siendo Si las raí
es de la e
ua
ión homogénea y Cp la 
onstante aso
iada a la solu
ión parti
ular

de la e
ua
ión, de�nidas de la siguiente manera:

Si =±
[

α

2
± 1

2
(α2 −4β )

1
2

] 1
2

i = 1,2,3,4 (4.16)

Cp =
∆

Λ4 +αΛ2 +β
(4.17)


on

∆ =
16

π

(
l

d

)4
E

Es

1

1+νs

(SR + iSI)

[
1

8

a2
0

κ
(1+ν f )+1

]
(4.18)

La 
onstantes Ci están determinadas por las 
ondi
iones de 
ontorno 
onsideradas en los extre-

mos superior e inferior de la estru
tura. En este 
aso, las 
ondi
iones de 
ontorno están de�nidas

en términos de 
ortante y momento que, en 
ualquier punto de la estru
tura, responden a las

expresiones siguientes:

M(ξ ,ω) =
EI

L2

[
∂ 2u

∂ξ 2
−αu+ γuI

]
(4.19)

Q(ξ ,ω) =
EI

L3

[
∂ 3u

∂ξ 3
−α

∂u

∂ξ
+ γ

duI

dξ

]
(4.20)

siendo el giro

θ(ξ ,ω) =
1

L

[
∂u

∂ξ
+

[
EI

µAL2

][
∂ 3u

∂ξ 3
−α

∂u

∂ξ
+ γ

∂uI

∂ξ

]]
(4.21)

En la parte superior, donde la estru
tura es 
onsiderada libre, se asume 
on los 
ortantes y

momentos son nulos:

Qξ=0 = 0 (4.22)

Mξ=0 = 0. (4.23)

Por otro lado, en la base de la estru
tura, en 
onta
to 
on el terreno, se asume que a
túan las

rea

iones del terreno debidas a los desplazamientos y giros de la estru
tura en ese punto. Para

determinar el valor de di
has rea

iones se toman las impedan
ias de�nidas en los trabajos de

Veletsos y Verbi
 [VV73℄ y Veletsos y Wei [VW71℄ para una 
imenta
ión super�
ial 
ir
ular,

tal y 
omo los presenta Biela
 [Bie75℄. Así, en la base de la estru
tura se puede es
ribir:

{
−Q

−M

}ξ=1

=

[
khh 0

0 kθ θ

]{
u−uI

θ

}ξ=1

(4.24)

donde, a
orde a las referen
ias arriba 
omentadas, las impedan
ias en la base son:

Khh = µsdK̃hh (4.25)

Kθ θ = µsd
3K̃θ θ (4.26)

donde

K̃ j(a0,νs) = σ j[k j(a0,νs)+ ia0c j(a0,νs)] j = hh,θθ (4.27)
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4.4 Respuesta en fre
uen
ia de la estru
tura. Modelo simpli�
ado Winkler�Timoshenko


on:

khh =1 (4.28)

chh =b1 (4.29)

khθ =0 (4.30)

chθ =0 (4.31)

kθ θ =1−b1θ
(b2ã0)

2

1+(b2ã0)2
−b3ã2

0 (4.32)

cθ θ =b1b2

(b2ã0)
2

1+(b2ã0)2
(4.33)

(4.34)

y donde σ j es la rigidez estáti
a, de�nida por las expresiones:

σhh =
8

2−ν
(4.35)

σrr =
8

3(1−ν)
(4.36)

siendo b1 y b2 los fa
tores adimensionales dados en la tabla 4.2 según Bielak [Bie75℄:

Tabla 4.2: Valores de bi [Bie75℄

ν = 0 ν = 1/3 ν = 0.45 ν = 0.5

b1 0.525 0.5 0.45 0.4

b2 0.8 0.8 0.8 0.8

b3 0 0 0.023 0.027

De este modo, de parti
ularizar las e
ua
iones (4.19) y (4.20) según lo estable
ido en (4.22),

(4.23) y (4.24), y 
onsiderando (4.15), se obtiene un sistema lineal de 4 e
ua
iones de 
uya

solu
ión para 
ada fre
uen
ia se obtienen los valores de las 
onstantes Ci.

4.4.4 Se

ión estru
tural generalizada

El desarrollo presentado en el punto anterior asume una se

ión estru
tural 
ir
ular ma
iza para

la estru
tura enterrada. Sin embargo, es más 
omún en estru
turas reales en
ontrar se

iones

de tipo anular, que pueden analizarse de forma rigurosa 
on esta misma solu
ión tomando unas

propiedades geométri
as y materiales modi�
adas según lo indi
ado a 
ontinua
ión.

Considerando una se

ión anular 
on unos diámetros externo e interno D y Di, el área e iner
ia

A
anular

e I
anular

de la se

ión anular pueden expresarse 
omo

I
anular

=
π

64
D4(1−δ 4) (4.37)

A
anular

=
π

4
D2(1−δ 2) (4.38)

donde δ es la rela
ión entre los diámetros interior y exterior

Di = δ ·D (4.39)
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Así, puede demostrarse que, para analizar una estru
tura de se

ión anular utilizando la solu
ión

des
rita en el punto anterior y las propiedades geométri
as A
anular

e I
anular

, es ne
esario utilizar

también las siguientes propiedades equivalentes (o redu
idas):

E
equiv

= E(1−δ 4) (4.40)

ρ
equiv

= ρ(1−δ 2) (4.41)

κ
equiv

= κ(1+δ 2)−1
(4.42)

4.5 Resultados

Siguiendo el pro
edimiento des
rito, en esta se

ión se presentan los resultados obtenidos para

el error promedio de�nido en la e
ua
ión (4.1). Las �guras 4.5 a 4.18 presentan la distribu
ión

de di
ho error promedio ε̄i en distintos intervalos de periodo para una tipología estru
tural

pre
isa (ma
iza/hue
a) y una profundidad de enterramiento determinada. Están 
onstituidas

por tres grá�
os en forma de super�
ies tridimensionales que representan este error promedio

en 
ada uno de los tramos del espe
tro espe
i�
ados. Las variables independientes de estas

grá�
as son la esbeltez de la estru
tura (L/D) y la velo
idad de propaga
ión de las ondas de


orte en el suelo (cs), ambas en el rango de valores estable
ido en el apartado 4.2.

Desde un punto de vista de apli
a
ión prá
ti
a, las 
urvas presentadas son útiles y su�
ientes

para que el diseñador lo
ali
e su 
aso parti
ular y estime el error 
ometido por un modelo sim-

pli�
ado que 
onsidere la estru
tura 
omo in�nitamente rígida. Con todo, y en esta línea, estas

�guras también permiten aventurar la proposi
ión de un 
riterio simple, tal y 
omo se propone

más adelante. Ahora, a la vista de los resultados, pueden realizarse algunos 
omentarios rele-

vantes y de 
ará
ter general que tienen que ver 
on la respuesta del problema y la signi�
a
ión

que la �exibilidad de la estru
tura tiene en la misma:

En todos los 
asos los valores de error promedio ε̄1 (Tramo 1: 0.0− 0.2s) son mayores

que ε̄2 (Tramo 2: 0.2−0.6s) y, ambos, muy superiores a los obtenidos para ε̄3 (Tramo 3:

0.6−2.0s). En este último, y para los valores más altos de periodo del tramo, tampo
o

hay diferen
ias signi�
ativas 
on el valor obtenido a partir del espe
tro de respuesta

de 
ampo libre utilizado de referen
ia (no se muestran estos resultados). Es también

interesante notar que los valores máximos de error en los tramos 1 y 2 son del mismo

orden.

También en todos los 
asos se observa que el efe
to del 
ará
ter �exible de la estru
tura

en la respuesta (o lo que es lo mismo, el error 
ometido 
on la utiliza
ión del modelo

rígido) 
re
e 
on la profundidad de enterramiento de la misma.

Siempre, el error 
ometido 
re
e 
on la esbeltez de la estru
tura pero de manera más

a
usada 
uanto menor es la rigidez del terreno. De he
ho, para valores de cs > 400m/s

(suelos tipo B) el error 
re
e muy moderadamente 
on la esbeltez de la estru
tura.

Respe
to a la tipología estru
tural, y 
omparando los 
omportamientos de estru
turas

hue
as o ma
izas, las diferen
ias no son importantes y, en 
ualquier tramo o profundidad

de enterramiento, dependen de los valores de esbeltez de la estru
tura y de velo
idad

de propaga
ión de las ondas en el suelo. Es muy llamativo que en mu
hos 
asos, para

L/D> 4 y cs > 400m/s (suelos tipo B), el efe
to de la �exibilidad de la estru
tura (el error


ometido 
on la utiliza
ión del modelo rígido) es inferior en el 
aso de la tipología hue
a

analizada. Se trata de estru
turas más �exibles que las ma
izas pero no debe olvidarse el
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papel que aquí juega la masa del 
onjunto. Cierto es que los valores máximos de error se

presentan para estru
turas hue
as en el rango de esbelte
es elevadas y bajas velo
idades

de propaga
ión de las ondas en el suelo (suelos tipo C).

Con el objetivo de proponer un 
riterio numéri
o aún más simple a partir de los resultados

obtenidos se presenta la tabla 4.3. En di
ha tabla, para 
ada profundidad de enterramiento

(L) se 
uanti�
an los límites de apli
a
ión del modelo rígido o, más bien, los 
asos en los que

se ha
e ne
esario a
udir a modelos que 
ontemplen la �exibilidad real de la estru
tura, en


ada tramo del espe
tro. Di
hos límites se han estable
ido para un valor del error promedio

igual al 10%. Teniendo en 
uenta las hipótesis 
onsideradas en el análisis y el elevado nivel de

in
ertidumbre en rela
ión 
on las propiedades del modelo, se trata de un valor razonable. Así

mismo, deben entenderse 
omo valores estimativos, teniendo en 
uenta la forma de las 
urvas

a partir de las 
uales se obtienen y obligados por el objetivo de estable
er de forma 
on
reta

estos límites. Con todo lo anterior, y dado además que las diferen
ias aso
iadas a la tipología

de la estru
tura (hue
a/ma
iza) son po
o importantes, estos límites pueden ser representativos

de ambos problemas.

Tabla 4.3: Valores de L/D y cs para los que el error promedio es signi�
ativo (ε̄ j > 10%)

al asumir la hipótesis de una estru
tura enterrada in�nitamente rígida 
on profundidad de

enterramiento L. Para las 
on�gura
iones indi
adas por 
eldas en gris, ninguno de los valores

estudiados al
anza errores promedio superiores al 10%. Estru
tura ma
iza o hue
a (δ = 0.85).

ε̄ j > 10% T = 0−0.2s T = 0.2−0.6s T = 0.6−2.0s

L [m℄ cs [m/s℄ L/D cs [m/s℄ L/D cs [m/s℄ L/D

5

10 < 240 > 9.0 ε̄ j < 10% siempre

20 < 600 > 6.0

30 ∀cs > 4.5 < 220 > 8.0

40 ∀cs > 4.0 < 280 > 6.0

50 ∀cs > 3.0 < 400 > 5.0

60 ∀cs > 2.0 < 500 > 4.0

La tabla 4.3 puede expli
arse más detenidamente 
omentando en detalle dos ejemplos 
on
retos:

1) L = 20m En el tramo 1, para estru
turas 
on esbeltez L/D > 6 y suelos 
on velo
idad de propa-

ga
ión de las ondas S cs < 600m/s, el error promedio 
ometido en el valor del espe
tro

de respuesta obtenido utilizando un modelo rígido para la estru
tura supera el 10% es-

table
ido. En los tramos 2 y 3 todas las 
ombina
iones estudiadas de la esbeltez de la

estru
tura y tipos de suelo proveen un error promedio inferior a este 10%.

2) L = 40m En el tramo 1, la utiliza
ión del modelo que 
onsidera rígida a la estru
tura da lugar

a errores promedio superiores al 10% para valores de la esbeltez L/D > 4 en todos los

tipos de suelo 
onsiderados. Para el tramo 2, la �exibilidad de la estru
tura es relevante

para L/D > 6 y cs < 280m/s. De nuevo, en el tramo 3 todas las 
ombina
iones posibles

presentan errores inferiores al 10%.

No es posible por tanto, en 
ontra de algunas re
omenda
iones publi
adas, estable
er un 
riterio

`
errado' y 
on
reto basado, en ex
lusiva, en la esbeltez para estable
er el 
ará
ter (rígido/�e-

xible) de la estru
tura a la hora de modelar este tipo de problemas. No sólo es ne
esario tener

en 
uenta la rigidez del suelo sino, además, y 
omo fa
tor más determinante, la profundidad de

enterramiento vin
ulado a la variabilidad de la ex
ita
ión a lo largo de la estru
tura. Todo ello
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sin olvidar el rango de interés (periodo) para la medida de la respuesta máxima. Dependiendo

de este rango, los límites para este 
riterio también pueden ser muy diferentes.

A
tuando muy del lado de la seguridad y tomando 
omo referen
ia sólo el tramo 1 (el más

restri
tivo del espe
tro en lo que a estos límites se re�ere), se puede 
on
luir que estru
turas


on valores de esbeltez L/D < 6 se 
omportan 
omo un sólido rígido en su respuesta sísmi
a

para profundidades de enterramiento inferiores a 20m en todos los tipos de suelo estudiados (B

y C). A medida que aumenta la profundidad a partir de este valor, el límite de la esbeltez que

permite tratar el problema 
on un modelo rígido se redu
e progresivamente hasta valores de

L/D de entre 2 y 3 para profundidades L de 50 m (del orden de la profundidad de enterramiento

del problema real estudiado en el Capítulo 3). Fuera de estos límites no resulta re
omendable

la utiliza
ión de métodos que no tengan en 
uenta el efe
to de la �exibilidad de la estru
tura.

4.6 Con
lusiones

Este 
apítulo ha presentado un 
onjunto de metodologías y resultados dirigidos a responder

a la siguiente pregunta: ¾es posible estimar la respuesta sísmi
a de una estru
tura enterrada

utilizando un modelo rígido de la misma? ¾En qué momento, esta hipótesis simpli�
adora

de in�nita rigidez de la estru
tura deja de tener sentido desde el punto de vista del análisis

ingenieril?

Para 
ontribuir a dar respuesta a esta pregunta, y dada la 
omplejidad del problema, se ha
e

ne
esaria la realiza
ión de un estudio paramétri
o de la respuesta de la estru
tura frente a

variables que se han 
onsiderado relevantes: Rela
ión de esbeltez de la estru
tura, profundidad

de enterramiento, velo
idad de propaga
ión de las ondas de 
orte en el suelo (
onsiderando la

estru
tura siempre 
omo eje
utada en Hormigón Armado, de manera que varía la rela
ión de

rigide
es entre estru
tura y suelo) y tipología (estru
tura hue
a o ma
iza). La utiliza
ión de

métodos numéri
os 
omo el presentado en el 
apítulo 3 (en el que suelo y estru
tura se modelan

y dis
retizan en su verdadera geometría) resulta ex
esivamente 
ostosa para la realiza
ión de

estudios paramétri
os 
omo el 
omentado, in
luso bajo la hipótesis de 
omportamiento lineal

y elásti
o, tal y 
omo se ha adoptado en este 
apítulo. Resulta más e�
iente realizar un primer

a
er
amiento al problema 
on la utiliza
ión de metodologías más sen
illas, 
omo puedan ser las

tipo Winkler presentadas en este 
apítulo. Esta metodología se utiliza para obtener un amplio


onjunto de resultados mostrando el error relativo promedio entre las respuestas sísmi
as de la

estru
tura 
onsiderada in�nitamente rígida o 
on su verdadera rigidez. Di
ho error promedio

se mide dire
tamente sobre distintos tramos del espe
tro de respuesta a 
ota 
ero sobre la

estru
tura, que es una tipología de resultado 
omúnmente utilizada en el ámbito de la ingeniería

sísmi
a, y que resulta más informativa que 
entrarse, por ejemplo, en a
elera
iones máximas

ante un determinado a
elerograma.

Los resultados muestran que, en mu
hos 
asos, la hipótesis de in�nita rigidez de la estru
tura

enterrada es ade
uada para análisis propuesto, estable
iendo di
ha 
ondi
ión de ade
uado en

este estudio 
uando el valor del error promedio respe
to a los resultados del modelo �exible está

por debajo del 10%. Esto es así, por ejemplo, para profundidades de enterramiento de sólo 5

metros en todas sus 
on�gura
iones, o para el tramo de periodos altos del espe
tro de respuesta

(periodos entre 0.6 y 2 segundos) en todos los 
asos. Para el resto de 
asos, se ha preparado

un tabla que sintetiza los 
asos para los que el error promedio se estima 
omo demasiado alto.

Finalmente, teniendo presente en todo momento las hipótesis simpli�
ativas que han sido asu-

midas, el estudio realizado ha permitido estable
er unos límites 
laros fuera de los 
uales no

resulta re
omendable la utiliza
ión de métodos que no tengan en 
uenta el efe
to de �exibilidad

86



4.6 Con
lusiones

de la estru
tura. Dependiendo del nivel de in
ertidumbre del problema o el de pre
isión reque-

rido en el análisis, puede ser su�
iente 
on la utiliza
ión de modelos simpli�
ados del problema

(
omo los modelos tipo Winkler y variantes) o se puede ha
er ne
esario a
udir a modelos más

so�sti
ados 
omo el abordado 
on el 
ódigo a
oplado de elementos de 
ontorno dis
utido y

utilizado en 
apítulos anteriores.
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Figura 4.5: Distribu
ión del error promedio ε̄ j del espe
tro de respuesta, 
al
ulado en 
ota

superior de la estru
tura, 
ometido en 
ada tramo j de los tres en que se ha dividido el eje de

periodo al asumir una estru
tura rígida en lugar de su verdadera �exibilidad en fun
ión de L/D

y cs. Estru
tura ma
iza. Profundidad de enterramiento L = 5m.
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Figura 4.6: Distribu
ión del error promedio ε̄ j del espe
tro de respuesta, 
al
ulado en 
ota

superior de la estru
tura, 
ometido en 
ada tramo j de los tres en que se ha dividido el eje de

periodo al asumir una estru
tura rígida en lugar de su verdadera �exibilidad en fun
ión de L/D

y cs. Estru
tura ma
iza. Profundidad de enterramiento L = 10m.
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Figura 4.7: Distribu
ión del error promedio ε̄ j del espe
tro de respuesta, 
al
ulado en 
ota

superior de la estru
tura, 
ometido en 
ada tramo j de los tres en que se ha dividido el eje de

periodo al asumir una estru
tura rígida en lugar de su verdadera �exibilidad en fun
ión de L/D

y cs. Estru
tura ma
iza. Profundidad de enterramiento L = 20m.
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Figura 4.8: Distribu
ión del error promedio ε̄ j del espe
tro de respuesta, 
al
ulado en 
ota

superior de la estru
tura, 
ometido en 
ada tramo j de los tres en que se ha dividido el eje de

periodo al asumir una estru
tura rígida en lugar de su verdadera �exibilidad en fun
ión de L/D

y cs. Estru
tura ma
iza. Profundidad de enterramiento L = 30m.
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Figura 4.9: Distribu
ión del error promedio ε̄ j del espe
tro de respuesta, 
al
ulado en 
ota

superior de la estru
tura, 
ometido en 
ada tramo j de los tres en que se ha dividido el eje de

periodo al asumir una estru
tura rígida en lugar de su verdadera �exibilidad en fun
ión de L/D

y cs. Estru
tura ma
iza. Profundidad de enterramiento L = 40m.
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Figura 4.10: Distribu
ión del error promedio ε̄ j del espe
tro de respuesta, 
al
ulado en 
ota

superior de la estru
tura, 
ometido en 
ada tramo j de los tres en que se ha dividido el eje de

periodo al asumir una estru
tura rígida en lugar de su verdadera �exibilidad en fun
ión de L/D

y cs. Estru
tura ma
iza. Profundidad de enterramiento L = 50m.
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Figura 4.11: Distribu
ión del error promedio ε̄ j del espe
tro de respuesta, 
al
ulado en 
ota

superior de la estru
tura, 
ometido en 
ada tramo j de los tres en que se ha dividido el eje de

periodo al asumir una estru
tura rígida en lugar de su verdadera �exibilidad en fun
ión de L/D

y cs. Estru
tura ma
iza. Profundidad de enterramiento L = 60m.
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Figura 4.12: Distribu
ión del error promedio ε̄ j del espe
tro de respuesta, 
al
ulado en 
ota

superior de la estru
tura, 
ometido en 
ada tramo j de los tres en que se ha dividido el eje de

periodo al asumir una estru
tura rígida en lugar de su verdadera �exibilidad en fun
ión de L/D

y cs. Estru
tura hue
a. Profundidad de enterramiento L = 5m.
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Figura 4.13: Distribu
ión del error promedio ε̄ j del espe
tro de respuesta, 
al
ulado en 
ota

superior de la estru
tura, 
ometido en 
ada tramo j de los tres en que se ha dividido el eje de

periodo al asumir una estru
tura rígida en lugar de su verdadera �exibilidad en fun
ión de L/D

y cs. Estru
tura hue
a. Profundidad de enterramiento L = 10m.
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Figura 4.14: Distribu
ión del error promedio ε̄ j del espe
tro de respuesta, 
al
ulado en 
ota

superior de la estru
tura, 
ometido en 
ada tramo j de los tres en que se ha dividido el eje de

periodo al asumir una estru
tura rígida en lugar de su verdadera �exibilidad en fun
ión de L/D

y cs. Estru
tura hue
a. Profundidad de enterramiento L = 20m.
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Figura 4.15: Distribu
ión del error promedio ε̄ j del espe
tro de respuesta, 
al
ulado en 
ota

superior de la estru
tura, 
ometido en 
ada tramo j de los tres en que se ha dividido el eje de

periodo al asumir una estru
tura rígida en lugar de su verdadera �exibilidad en fun
ión de L/D

y cs. Estru
tura hue
a. Profundidad de enterramiento L = 30m.
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Figura 4.16: Distribu
ión del error promedio ε̄ j del espe
tro de respuesta, 
al
ulado en 
ota

superior de la estru
tura, 
ometido en 
ada tramo j de los tres en que se ha dividido el eje de

periodo al asumir una estru
tura rígida en lugar de su verdadera �exibilidad en fun
ión de L/D

y cs. Estru
tura hue
a. Profundidad de enterramiento L = 40m.
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Figura 4.17: Distribu
ión del error promedio ε̄ j del espe
tro de respuesta, 
al
ulado en 
ota

superior de la estru
tura, 
ometido en 
ada tramo j de los tres en que se ha dividido el eje de

periodo al asumir una estru
tura rígida en lugar de su verdadera �exibilidad en fun
ión de L/D

y cs. Estru
tura hue
a. Profundidad de enterramiento L = 50m.
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Figura 4.18: Distribu
ión del error promedio ε̄ j del espe
tro de respuesta, 
al
ulado en 
ota

superior de la estru
tura, 
ometido en 
ada tramo j de los tres en que se ha dividido el eje de

periodo al asumir una estru
tura rígida en lugar de su verdadera �exibilidad en fun
ión de L/D

y cs. Estru
tura hue
a. Profundidad de enterramiento L = 60m.
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Modelo MEC�MEF para el

análisis dinámi
o de estru
turas

de edi�
a
ión 
imentadas en

terrenos elásti
os o poroelásti
os

Capítulo5

5.1 Introdu

ión

En este 
apítulo se presenta la formula
ión de un modelo a
oplado de elementos de 
ontorno �

elementos �nitos (MEC�MEF) en el dominio de la fre
uen
ia para estudiar la respuesta dinámi
a

y sísmi
a de estru
turas de edi�
a
ión, aisladas o en grupos, 
imentadas en terrenos elásti
os

o poroelásti
os. Para tal �n, el modelo de elementos de 
ontorno presentado en el 
apítulo 2

se ha dotado de 
ara
terísti
as adi
ionales 
on el objetivo de redu
ir el 
oste 
omputa
ional


uando se trata 
on estru
turas de este tipo. Di
ho modelo previo de elementos de 
ontorno

ha sido usado 
on anterioridad en el estudio de diferentes problemas de interés en el 
ampo

de la ingeniería sísmi
a, 
omo pueden ser por ejemplo la respuesta de: presas in
luyendo los

efe
tos de la distribu
ión espa
ial de la ex
ita
ión y la presen
ia de sedimentos poroelásti
os

[MAD02, MAD04℄; pilotes y grupos de pilotes en terrenos poroelásti
os [MAG05℄; o 
omo se

puede ver en el 
apítulo 3 anterior, para el estudio de estru
turas enterradas po
o esbeltas y

los efe
tos de su �exibilidad en la respuesta [VAS

+
13℄.

En los problemas de apli
a
ión de este nuevo modelo MEC�MEF, el terreno puede ser 
onside-

rado 
omo una región elásti
a o poroelásti
a usando elementos de 
ontorno. Cuando la hipótesis

de rigidez in�nita es apli
able a la 
imenta
ión, este modelo permite in
orporar regiones 
on


omportamiento de sólido rígido embebidas en el terreno. El a
oplamiento entre la malla de

elementos de 
ontorno y la 
imenta
ión rígida es posible a través de una estrategia numéri
a

basada en la apli
a
ión de e
ua
iones adi
ionales de equilibrio y 
ompatibilidad en las interfases

entre el suelo y la 
imenta
ión. De esta manera el movimiento de la 
imenta
ión puede ser

medido a través de un úni
o punto de referen
ia arbitrario, lo que supone una 
onsiderable

redu

ión en el número de grados de libertad del problema. La implementa
ión en el modelo

de elementos de 
ontorno de esta estrategia es expli
ada en el apartado 5.2.

Las estru
turas de edi�
a
ión son modeladas 
omo vigas homogéneas y elásti
as usando ele-

mentos �nitos de dos nodos basados en la teoría de vigas de Timoshenko, por lo que se 
onsidera

la deforma
ión por 
ortante. Por otro lado, la ex
entri
idad torsional de edi�
ios 
on se

ión

no simétri
a también es tenida en 
uenta. En el apartado 5.3 se presentan las 
ara
terísti
as
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5 Modelo MEC�MEF. Análisis dinámi
o de estru
turas de edi�
a
ión

del elemento �nito utilizado así 
omo su matriz de rigidez modi�
ada para tener en 
uenta el

efe
to de la ex
entri
idad torsional. El punto de referen
ia de la 
imenta
ión rígida será usado

para a
oplar las e
ua
iones del movimiento de la superestru
tura al sistema de e
ua
iones que

de�ne el 
omportamiento del terreno y la 
imenta
ión.

El modelo a
oplado de elementos de 
ontorno y elementos �nitos que se presenta es 
apaz de

representar de manera rigurosa los aspe
tos esen
iales del problema que se pretende estudiar


onsiguiendo al mismo tiempo ser versátil y e�
iente desde el punto de vista 
omputa
ional. La

apli
a
ión de este modelo no se redu
e sólo al 
aso de estru
turas de edi�
a
ión (
omo puede

verse en la �gura 5.1), sino también a otro tipo de estru
turas, 
omo pueden ser por ejemplo

las de aerogeneradores.

Free soil surfa
e

Buildings

(modelled using Timoshenko beam �nite elements)

Embedded foundations

(�exible or rigid domains)

Unbounded soil

(elasti
 or poroelasti
 halfspa
e)

Boundary element

mesh of the soil

In
ident wave

Figura 5.1: Grupo de edi�
ios 
er
anos 
imentados en un semiespa
io. Esquema de los prin
i-

pales aspe
tos in
luidos en el modelo.

5.2 Condi
iones de 
uerpo rígido

En este trabajo, las regiones dis
retizadas usando elementos de 
ontorno son modeladas 
omo

lineales, homogéneas, isótropas, elásti
as o poroelásti
as, 
onsiderando además 
ondi
iones de


onta
to soldadas entre los diferentes dominios. Como ya se dijo en el 
apítulo anterior, para

la dis
retiza
ión de los 
ontornos se usan elementos 
uadráti
os tridimensionales triangulares

(6 nodos) y/o 
uadriláteros (9 nodos). Para la in
orpora
ión al modelo de elementos de 
ontorno

de las 
ondi
iones de 
uerpo rígido, partimos del sistema de e
ua
iones (2.90) presentado en el


apítulo 2 y que volvemos a es
ribir aquí para mayor 
omodidad:

Hu = Gp (5.1)

donde los elementos de las matri
es H y G son obtenidos por integra
ión del produ
to entre la

solu
ión fundamental armóni
a y las 
orrespondientes fun
iones de forma, y siendo u y p los

ve
tores de los desplazamientos y tensiones nodales.

En el 
aso de que se trate 
on suelos saturados de agua, se adopta la teoría de Biot [Bio56a℄ para

suelos poroelásti
os, los ve
tores de desplazamiento normal del �uido U y tensión equivalente

τ en los nodos son también variables del problema. Es por ello que para este tipo de dominios
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5.2 Condi
iones de 
uerpo rígido

y para mayor 
laridad en la expli
a
ión, el sistema de e
ua
iones (5.1) se expresa 
omo sigue

[Dom92, MAG05℄:

[
Hss Hsw

Hws Hww

][
u

τ

]
=

[
Gss Gsw

Gws Gww

][
p

U

]
(5.2)

donde los superíndi
es 's' y 'w' están referidos respe
tivamente al esqueleto sólido y a la fase

�uida del medio poroelásti
o y siendo en este 
aso u y p los ve
tores de desplazamientos

y tensiones nodales sobre el esqueleto sólido. Los elementos de las submatri
es H y G son


al
ulados por integra
ión del produ
to de la solu
ión fundamental armóni
a en tres dimensiones

y las fun
iones de forma sobre los elementos de 
ontorno.

Considerando que ondas armóni
as planas, originadas desde una fuente lejana, afe
tan a la

lo
aliza
ión de la 
imenta
ión, la presen
ia de ésta provo
a distorsiones en los 
ampos de

onda in
identes. Los 
ampos in
identes son 
ompletamente 
ono
idos. Los 
ampos totales

de desplazamientos u y tensiones p son la suma del 
ampo in
idente y el 
ampo difra
tado,

los 
uales se denotan respe
tivamente 
on los subíndi
es I y D, por lo que se puede es
ribir

u = uI +uD y p = pI +pD. En el 
aso de que el semiespa
io por el que se propagan las ondas

sea de tipo poroelásti
o, hay que 
onsiderar los 
ampos in
identes de las tensiones equivalentes

en el �uido y el desplazamiento normal del mismo, los 
uales se denotan respe
tivamente 
omo

τ I and UI. Por tanto, τ = τ I + τD y U = UI +UD. Teniendo todo esto en 
uenta, los sistemas

de e
ua
iones (5.1) y (5.2) pueden es
ribirse, respe
tivamente, para el 
ampo difra
tado 
omo:

H(u−uI) = G(p−pI) (5.3)

[
Hss Hsw

Hws Hww

][
u−uI

τ − τ I

]
=

[
Gss Gsw

Gws Gww

][
p−pI

U−UI

]
(5.4)

En los problemas en los que la hipótesis de rigidez in�nita se puede 
onsiderar para la 
imenta-


ión, se puede redu
ir el número de grados de libertad de los mismos. La estrategia que se va a

implementar para in
luir las restri

iones de 
uerpo rígido es una de las tres té
ni
as propuestas

por [TM07℄ apli
adas por estos autores a un problema en dos dimensiones en el que la región del

terreno es de naturaleza vis
oelásti
a. En este estudio, se amplia di
ha estrategia para apli
arla

problemas tridimensionales, in
luyendo también la posibilidad de que el terreno pueda tener

naturaleza poroelásti
a. El pro
eso de implementa
ión se puede resumir en la in
orpora
ión de

la 
ompatibilidad 
inemáti
a y las 
ondi
iones de equilibrio en las matri
es de las e
ua
iones

(5.3) y (5.4). Se asume que el 
omportamiento de 
uerpo rígido es apli
able a la 
imenta
ión,

la 
ual está embebida en un semiespa
io elásti
o o poroelásti
o (ver �gura 5.2). La super�
ie

libre del suelo y la interfase rígida entre el suelo y la 
imenta
ión se etiquetan respe
tivamente


omo Γs y Γr. Así, los sistemas de e
ua
iones (5.3) y (5.4) pueden es
ribirse respe
tivamente


omo sigue:

[
Hss Hsr

Hrs Hrr

][
us − (uI)s

ur − (uI)r

]
=

[
Gss Gsr

Grs Grr

][
ps − (pI)s

pr − (pI)r

]
(5.5)
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


Hss
ss Hss

sr Hsw
ss Hsw

sr

Hss
rs Hss

rr Hsw
rs Hsw

rr

Hws
ss Hws

sr Hww
ss Hww

sr

Hws
rs Hws

rr Hww
rs Hww

rr







us − (uI)s

ur − (uI)r

τ s − (τ I)s

τr − (τ I)r


=




Gss
ss Gss

sr Gsw
ss Gsw

sr

Gss
rs Gss

rr Gsw
rs Gsw

rr

Gws
ss Gws

sr Gww
ss Gww

sr

Gws
rs Gws

rr Gww
rs Gww

rr







ps − (pI)s

pr − (pI)r

Us − (UI)s

Ur − (UI)r




(5.6)

siendo los valores de las tensiones y la tensión equivalente del �uido iguales a 
ero en la super�
ie

libre, por tanto, 
omo 
ondi
iones de 
ontorno del problema, tenemos que ps = (pI)s = 0 y

τs = (τ I)s = 0.

uref
θ ref

x vref

θ ref
y

wref

θ ref
z Γs (free soil surfa
e)

Γr (rigid interfa
e)

P or S in
ident wave

Rayleigh in
ident wave

rigid

foundation

elasti
 or poroelasti
 domain Ω

Figura 5.2: Modelo rígido para la 
imenta
ión. Super�
ie libre Γs (ps = 0, τ s = 0) e interfase

rígida Γr.

El movimiento de la 
imenta
ión rígida presenta seis grados de libertad (tres desplazamientos

y tres giros) que pueden ser 
ondensados en un punto de referen
ia arbitrario de 
oordenadas

(xref, yref, zref) y ordenados en el ve
tor de desplazamiento uref
de di
ho punto de la siguiente

forma

uref =




uref

vref

wref

θ ref
x

θ ref
y

θ ref
z




(5.7)

La rela
ión de 
ompatibilidad 
inemáti
a que existe entre el punto de referen
ia y 
ualquier

nodo i, de 
oordenadas (xi, yi, zi), en la interfase rígida Γr puede es
ribirse en forma matri
ial


omo

ui = Ci uref
(5.8)

donde la matriz Ci
es la que rela
iona de manera 
inemáti
a el ve
tor de desplazamientos ui

de 
ada nodo i 
on el punto de referen
ia, expresándose éstos 
omo
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Ci =




1 0 0 0 (zi − zref) (yref − yi)
0 1 0 (zref − zi) 0 (xi − xref)
0 0 1 (yi − yref) (xref − xi) 0


 ; ui =




ui

vi

wi




(5.9)

Para todos los nodos Nr de la interfase rígida Γr, di
ha rela
ión 
inemáti
a (5.8) puede es
ribirse


omo

ur = Curef
(5.10)

donde ur 
ontiene los ve
tores de desplazamientos nodales y la matriz C 
ada una de las

matri
es que rela
iona 
ada nodo en Γr 
on el punto de referen
ia. Por tanto se expresan de la

siguiente manera

ur =




u1

.

.

.

ui

.

.

.

uNr




; C =




C1

.

.

.

Ci

.

.

.

CNr




(5.11)

Una vez de�nida la rela
ión 
inemáti
a (5.10), es ne
esario que se 
umpla también el equilibrio

entre las fuerzas que a
túan sobre la 
imenta
ión rígida y las tensiones sobre la interfase

rígida Γr, tanto del esqueleto sólido 
omo de la fase �uida. Llamaremos τ j(x, y, z) a la tensión

equivalente del �uido, p j(x, y, z) al ve
tor de tensiones de la fase sólida y n j(x, y, z) al ve
tor
normal del elemento j pertene
iente a Γr. Estos dos últimos se es
riben respe
tivamente de la

siguiente forma

p j(x, y, z) =




p
j
x

p
j
y

p
j
z


 ; n j(x, y, z) =




n
j
x

n
j
y

n
j
z


 (5.12)

Teniendo en 
uenta las fuerzas de iner
ia y el ve
tor resultante de las fuerzas externas que

a
túan sobre el 
entro de gravedad de la 
imenta
ión Fcg = (Fcg
x , F

cg
y , F

cg
z , M

cg
x , F

cg
y , F

cg
z )T, las

e
ua
iones que determinan la rela
ión de equilibrio en el 
entro de gravedad pueden expresarse


omo sigue
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F
cg
k =

NEr

∑
j=1

∫

Γ
j
r

(p
j
k + τ j n

j
k)dΓ j

r −ω2 M u
cg
k ; k = x,y,z

Mcg
x =

NEr

∑
j=1

(∫

Γ
j
r

(p j
y + τ j n j

y)(z
cg − z j)dΓ j

r +

∫

Γ
j
r

(p j
z + τ j n j

z)(y
j − ycg)dΓ j

r

)
−ω2 Icg

x θ cg
x

Mcg
y =

NEr

∑
j=1

(∫

Γ
j
r

(p j
x + τ j n j

x)(z
j − zcg)dΓ j

r +

∫

Γ
j
r

(p j
z + τ j n j

z)(x
cg − x j)dΓ j

r

)
−ω2 Icg

y θ cg
y

Mcg
z =

NEr

∑
j=1

(∫

Γ
j
r

(p j
x + τ j n j

x)(y
cg − y j)dΓ j

r +

∫

Γ
j
r

(p j
y + τ j n j

y)(x
j − xcg)dΓ j

r

)
−ω2 Icg

z θ cg
z

(5.13)

siendo M la masa total e I
cg
x , I

cg
y , I

cg
z los momentos de iner
ia de la 
imenta
ión. Las 
oordenadas

del 
entro de gravedad vienen dadas por (xcg, ycg, zcg), NEr es el número de elementos de la

interfase rígida, ω la fre
uen
ia de ex
ita
ión y (x j, y j, z j) las 
oordenadas de los puntos que

determinan el ve
tor de posi
ión r j(x, y, z) sobre el elemento j.

Las variables p j(x, y, z), τ j(x, y, z) y r j(x, y, z) sobre el elemento j pueden ser expresadas 
omo

la suma de los produ
tos del valor de las mismas en el nodo m por la fun
ión de forma φ
j

m(ξ1, ξ2)
(ver tabla 2.1 en el 
apítulo 2) en di
ho nodo del elemento j. Esto último puede expresarse de

la siguiente manera

p j
x =

N j

∑
m=1

(p j
x)m φ j

m(ξ1, ξ2) ; p j
y =

N j

∑
m=1

(p j
y)m φ j

m(ξ1, ξ2) ; p j
z =

N j

∑
m=1

(p j
z)m φ j

m(ξ1, ξ2) (5.14)

τ j =
N j

∑
m=1

τ j
m φ j

m(ξ1, ξ2) (5.15)

x j =
N j

∑
m=1

x j
m φ j

m(ξ1, ξ2) ; y j =
N j

∑
m=1

y j
m φ j

m(ξ1, ξ2) ; z j =
N j

∑
m=1

z j
m φ j

m(ξ1, ξ2) (5.16)

donde N j es el número de nodos del elemento j. Si sustituimos (5.14), (5.15) y (5.16) en el

grupo de e
ua
iones (5.13), este último puede es
ribirse de manera 
ompa
ta 
omo

Fcg = Epr +Jτ r −ω2 Mucg
(5.17)

siendo E y J las matri
es de equilibrio donde 
ada 
omponente de la matriz es igual la suma

de las integrales de las fun
iones de forma del nodo i sobre los elementos a los que di
ho nodo

i pertene
e. M es una matriz diagonal que 
ontiene la masa total y los momentos de iner
ia.
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uerpo rígido

M =




M 0 0 0 0 0

0 M 0 0 0 0

0 0 M 0 0 0

0 0 0 I
cg
x 0 0

0 0 0 0 I
cg
y 0

0 0 0 0 0 I
cg
z




(5.18)

pr 
ontiene los ve
tores de las tensiones nodales, τr los valores nodales de la tensión equivalente

en el �uido y ucg
es el ve
tor de desplazamientos del 
entro de gravedad de la 
imenta
ión:

pr =




p1

.

.

.

pi

.

.

.

pNr




; τr =




τ1

.

.

.

τ i

.

.

.

τNr




; ucg =




ucg

vcg

wcg

θ
cg
x

θ cg
y

θ cg
z




(5.19)

El grupo de e
ua
iones de equilibrio (5.17), de�nido en el 
entro de gravedad del 
uerpo rígido,

puede generalizarse para un punto de referen
ia arbitrario al 
onsiderar las rela
iones 
inemáti
as

y de equilibrio entre ambos puntos. Estas rela
iones pueden expresarse respe
tivamente de forma

matri
ial de la siguiente forma:

ucg = Luref ; Fcg = TFref
(5.20)

donde L y T son las matri
es que rela
ionan respe
tivamente los desplazamientos y fuerzas del


entro de masa y punto de referen
ia. Estas dependen úni
amente de las 
oordenadas de ambos

puntos y se 
umple que la inversa de la traspuesta de L es igual a T, es de
ir T = (LT)−1
, por

tanto se presenta

L =




1 0 0 0 (zcg − zref) (yref − ycg)
0 1 0 (zref − zcg) 0 (xcg − xref)
0 0 1 (ycg − yref) (xref − xcg) 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




(5.21)

Introdu
iendo las expresiones (5.20) en la e
ua
ión de equilibrio del 
uerpo rígido (5.17), ésta

última se es
ribe para el punto de referen
ia 
omo sigue

TFref = Epr +Jτr −ω2 MLuref
(5.22)

Hasta aquí se han de�nido las 
ondi
iones de 
ompatibilidad 
inemáti
a (5.10) y de equilibrio

(5.22) de la 
imenta
ión rígida. El siguiente paso es introdu
ir ambas en los sistemas (5.5)

y (5.6) según se 
onsidere la naturaleza del semiespa
io 
omo vis
oelásti
a o poroelásti
a.

Por tanto, asumiendo 
ondi
iones de 
onta
to soldadas entre la 
imenta
ión rígida y el suelo,

teniendo en 
uenta las 
ondi
iones de 
ontorno y reordenando, el sistema (5.5) para el 
aso

vis
oelásti
o 
ondu
e a
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


Hss Hsr C −Gsr ∅

Hrs Hrr C −Grr ∅

∅ −ω2 ML E −T







us

uref

pr

Fref


=




Hss Hsr −Gsr

Hrs Hrr −Grr

∅ ∅ ∅






(uI)s

(uI)r

(pI)r




(5.23)

y el sistema (5.6) para un semiespa
io poroelásti
o se es
ribe




Hss
ss −Gsw

ss Hss
sr C −Gsw

sr −Gss
sr Hsw

sr ∅

Hss
rs −Gsw

rs Hss
rr C −Gsw

rr −Gss
rr Hsw

rr ∅

Hws
ss −Gww

ss Hws
sr C −Gww

sr −Gws
sr Hww

sr ∅

Hws
rs −Gww

rs Hws
rr C −Gww

rr −Gws
rr Hww

rr ∅

∅ ∅ −ω2 ML ∅ E J −T







us

Us

uref

Ur

pr

τr

Fref




=




Hss
ss −Gsw

ss Hss
sr −Gsw

sr −Gss
sr Hsw

sr

Hss
rs −Gsw

rs Hss
rr −Gsw

rr −Gss
rr Hsw

rr

Hws
ss −Gww

ss Hws
sr −Gww

sr −Gws
sr Hww

sr

Hws
rs −Gww

rs Hws
rr −Gww

rr −Gws
rr Hww

rr

∅ ∅ ∅ ∅ ∅ ∅







(uI)s

(UI)s

(uI)r

(UI)r

(pI)r

(τ I)r




(5.24)

En este último 
aso, para de�nir la rela
ión entre el �uido en los poros y la interfase rígida,

es ne
esario de�nir una 
ondi
ión adi
ional en di
ha interfase entre la 
imenta
ión rígida y el

terreno poroelásti
o. En este trabajo, se 
onsideran dos 
ondi
iones de 
onta
to basadas en

los 
asos parti
ulares de la teoría presentada por Deresiewi
z y Shalak [DS63℄, pudiendo ser

drenado o no drenado.

Por un lado, si se 
onsidera Γr 
omo una interfase permeable (
onta
to drenado), el �uido


ir
ula libremente a través de los poros de la interfase y por tanto la tensión equivalente del

�uido es nula τr = 0 y el desplazamiento normal del mismo Ur es in
ógnita del problema.

Por 
ontra, si la interfase rígida se 
onsidera impermeable (
onta
to no drenado) no existe

traspaso del �uido a través de Γr, por tanto la tensión equivalente del �uido τr es in
ógnita y

el desplazamiento Ur del �uido esta 
ompletamente restringido por di
ha interfase y es igual al

desplazamiento normal del esqueleto sólido nr ur, siendo nr el ve
tor normal a Γr.

En 
ualquier 
aso, los desplazamientos uref
y las rea

iones Fref

en el punto de referen
ia son

in
ógnitas del sistema de e
ua
iones y se usarán para a
oplar, a través de 
ondi
iones 
ine-

máti
as y de equilibrio, la 
imenta
ión rígida y la base de la superestru
tura, dis
retizada ésta

última 
on elementos �nitos 
omo los que se presentan en la siguiente se

ión. El a
oplamiento

entre la superstru
tura de elementos �nitos y el dominio rígido modelado 
on elementos de


ontorno se expli
a 
on más detalle más adelante en el apartado 5.4.

5.3 Modelado de edi�
ios. Elemento �nito de dos nodos

En este trabajo, la superestru
tura es dis
retizada usando elementos �nitos tridimensionales de

dos nodos basados en la teoría de Timoshenko sobre la deforma
ión por 
ortante [Tim21, Tim22℄

para problemas en el dominio de la fre
uen
ia. Este elemento �nito se formula para tener en


uenta los grados de libertad en dire

ión axial y de torsión, por lo que puede verse 
omo una
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5.3 Modelado de edi�
ios. Elemento �nito de dos nodos

mejora del elemento propuesto por Friedman y Kosmatka [FK93℄. Se de�nen para el mismo seis

grados de libertad por nodo que in
luyen tres desplazamientos y tres giros (u, v, w, θx, θy, θz),
tal y 
omo puede verse en la �gura 5.3

x
y

z

u j
θ

j
x

v j

θ
j

y

w j

θ
j

z

ui
θ i

x
vi

θ i
y

wi

θ i
z

j�node

i�node

ui = (ui, vi, wi, θ i
x, θ i

y, θ i
z)
T

u j = (u j, v j, w j, θ
j

x , θ
j

y , θ
j

z )
T

Figura 5.3: Elemento �nito de dos nodos, basado en la teoría de Timoshenko para la deforma-


ión por 
ortante, usado para la dis
retiza
ión de edi�
ios.

Los ve
tores de desplazamientos nodales ui y u j, así 
omo los de fuerzas nodales Fi y F j se

expresan 
omo

ui =




ui

vi

wi

θ i
x

θ i
y

θ i
z




; u j =




u j

v j

w j

θ j
x

θ j
y

θ j
z




; Fi =




F i
x

F i
y

F i
z

Mi
x

Mi
y

Mi
z




; F j =




F
j

x

F
j

y

F
j

z

M
j
x

M
j
y

M
j
z




(5.25)

Cuando se trata 
on edi�
ios de se

ión transversal no simétri
a, ver �gura 5.4, el 
entro de

esfuerzos 
ortantes C (punto donde al apli
ar una 
arga transversal no se produ
e torsión)

y el 
entro de masas G (donde están apli
adas las fuerzas de iner
ia) de la se

ión pueden

lo
alizarse en lugares distintos. En los 
asos en los que esto o
urre, la respuesta transversal

y torsional de la estru
tura están a
opladas 
uando el plano que 
ontiene la resultante de las


argas transversales no 
ontiene el 
entro de esfuerzos 
ortantes C. El 
aso de torsión que se

aborda a 
ontinua
ión es el 
orrespondiente a torsión libre, es de
ir, no se han tenido en 
uenta

las 
onse
uen
ias de las eventuales restri

iones del alabeo de las se

iones.

Figura 5.4: Modelado de edi�
io 
on una se

ión transversal genér
ia no simétri
a.
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La matriz de rigidez presentada por Friedman and Kosmatka [FK93℄ está de�nida en el 
entro

de esfuerzos 
ortantes C. La matriz de rigidez KC
i j in
orporando además los grados de libertad

en dire

ión axial y torsional para un elemento i j se presenta a 
ontinua
ión, dividida en 
uatro

submatri
es, 
omo

KC
i j =

[
KC

ii KC
i j

KC
ji KC

j j

]
(5.26)

Teniendo en 
uenta que KC
ji es igual a la traspuesta de KC

i j , KC
ji = (KC

i j)
T

, las submatri
es que

de�nen KC
i j son

KC
ii =




12E Iy

(1+φy)L3 0 0 0
6E Iy

(1+φy)L2 0

0 12E Ix

(1+φx)L3 0 −6E Ix

(1+φx)L2 0 0

0 0 E A
L

0 0 0

0 −6E Ix

(1+φx)L2 0
4+φx

1+φx

E Ix

L
0 0

6E Iy

(1+φy)L2 0 0 0
4+φy

1+φy

E Iy

L
0

0 0 0 0 0
µ J

L




(5.27)

KC
i j =




−12E Iy

(1+φy)L3 0 0 0
6E Iy

(1+φy)L2 0

0 −12E Ix

(1+φx)L3 0 −6E Ix

(1+φx)L2 0 0

0 0 −E A
L

0 0 0

0 6E Ix

(1+φx)L2 0
2−φx

1+φx

E Ix

L
0 0

−6E Iy

(1+φy)L2 0 0 0
2−φy

1+φy

E Iy

L
0

0 0 0 0 0
−µ J

L




(5.28)

KC
j j =




12E Iy

(1+φy)L3 0 0 0
−6E Iy

(1+φy)L2 0

0 12E Ix

(1+φx)L3 0 6E Ix

(1+φx)L2 0 0

0 0 E A
L

0 0 0

0 6E Ix

(1+φx)L2 0
4+φx

1+φx

E Ix

L
0 0

−6E Iy

(1+φy)L2 0 0 0
4+φy

1+φy

E Iy

L
0

0 0 0 0 0
µ J

L




(5.29)

siendo E el módulo de Young, µ el módulo de rigidez transversal, A el área de la se

ión, Ix, Iy

los momentos de iner
ia, J la 
onstante de rigidez a torsión y L la longitud del elemento i j.

Los fa
tores de 
ortante φx y φy se expresan 
omo

φx =
12E Ix

µ κ ′
y AL2

; φy =
12E Iy

µ κ ′
x AL2

(5.30)

donde κ ′
x y κ ′

y son los fa
tores de 
orre

ión de 
ortante. Estos fa
tores de 
orre

ión dependen

de la geometría de la se

ión y 
onsideran que las tensiones transversales no están distribuidas

uniformemente sobre ella (ver detalles p.e. en [GW01℄).

Se puede es
ribir, sin tener en 
uenta las fuerzas iner
iales, el sistema de e
ua
iones que de�ne

el equilibrio del elemento i j en el punto C 
omo
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[
Fi

F j

]C

= KC
i j

[
ui

u j

]C

(5.31)

En el 
aso de que se 
onsideren las fuerzas iner
iales se ha
e ne
esario trasladar di
ha matriz de

rigidez KC
i j para de�nirla en el 
entro de gravedad G de la se

ión. Para ello se tienen en 
uenta

las rela
iones de 
ompatibilidad 
inemáti
a y equilibrio entre ambos puntos (ver �gura 5.5),

que se es
riben matri
ialmente para el elemento i j de la siguiente manera

Rela
iones 
inemáti
as

uC = uG −ey θ G
z

vC = vG +ex θ G
z

wC = wG

θ C
x = θ G

x ; θ C
y = θ G

y ; θ C
z = θ G

z

Rela
iones de equilibrio

FC
x = FG

x

FC
y = FG

y

FC
z = FG

z

MC
x = MG

x

MC
y = MG

y

MC
z = ey FG

x −ex FG
y +MG

z

nodo jex
eyG

C

nodo i
ex

eyG

C

ex
ey

x y

z

G

x y

z

C

Figura 5.5: Rela
iones 
inemáti
as y de equilibrio entre el 
entro de esfuerzos 
ortantes y el


entro de gravedad de una se

ión genéri
a 
on ex
entri
idad.

[
ui

u j

]C

=

[
S 0

0 S

][
ui

u j

]G

;

[
Fi

F j

]C

=

[
S′ 0

0 S′

][
Fi

F j

]G

(5.32)

donde la matriz S se expresa 
omo sigue

S =




1 0 0 0 0 −ey

0 1 0 0 0 ex

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




(5.33)

y siendo S′
la inversa de la transpuesta de S; S′ = (ST)−1

.

Sustituyendo las expresiones (5.32) en (5.31), teniendo en 
uenta la rela
ión entre S y S′
y

reordenando puede es
ribirse el equilibrio del elemento i j en términos de desplazamientos y

fuerzas en el 
entro de gravedad G de la se

ión

[
Fi

F j

]G

=

[
ST 0

0 ST

]
KC

i j

[
S 0

0 S

][
ui

u j

]G

= KG
i j

[
ui

u j

]G

(5.34)

El produ
to de las matri
es S y la matriz KC
i j permite obtener la matriz de rigidez en el 
entro

de gravedad de la se

ión KG
i j, por tanto
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KG
i j =

[
ST 0

0 ST

]
KC

i j

[
S 0

0 S

]
(5.35)

Si dividimos la matriz KG
i j en 
uatro submatri
es, se puede expresar 
omo

KG
i j =

[
KG

ii KG
i j

KG
ji KG

j j

]
(5.36)

donde las submatri
es que de�nen KG
i j son
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M
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i
o
s
.
E
l
e
m
e
n
t
o
�
n
i
t
o
d
e
d
o
s
n
o
d
o
s

KG
ii =




12Qy

L3 0 0 0
6Qy

L2

−12Qy ey

L3

0 12Qx

L3 0 −6Qx

L2 0 12Qx ex

L3

0 0 E A
L

0 0 0

0 −6Qx

L2 0
(4+φx)Qx

L
0 −6Qx ex

L2

6Qy

L2 0 0 0
(4+φy)Qy

L

−6Qy ey

L2

−12Qy ey

L3
12Qx ex

L3 0 −6Qx ex

L2

−6Qy ey

L2

12Qx e2
x

L3 +
12Qy e2

y

L3 + µ J
L




(5.37)

KG
i j =




−12Qy

L3 0 0 0
6Qy

L2

12Qy ey

L3

0 −12Qx

L3 0 −6Qx

L2 0 −12Qx ex

L3

0 0 −E A
L

0 0 0

0 6Qx

L2 0
(2−φx)Qx

L
0 6Qx ex

L2

−6Qy

L2 0 0 0
(2−φy)Qy

L

6Qy ey

L2

12Qy ey

L3
−12Qx ex

L3 0 −6Qx ex

L2

−6Qy ey

L2

−12Qx e2
x

L3 − 12Qy e2
y

L3 − µ J
L




(5.38)

KG
j j =




12Qy

L3 0 0 0
−6Qy

L2

−12Qy ey

L3

0 12Qx

L3 0 6Qx

L2 0 12Qx ex

L3

0 0 E A
L

0 0 0

0 6Qx

L2 0
(4+φx)Qx

L
0 6Qx ex

L2

−6Qy

L2 0 0 0
(4+φy)Qy

L

6Qy ey

L2

−12Qy ey

L3
12Qx ex

L3 0 6Qx ex

L2

6Qy ey

L2

12Qx e2
x

L3 +
12Qy e2

y

L3 + µ J
L




(5.39)
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siendo

Qx =
E Ix

1+φx

; Qy =
E Iy

1+φy

(5.40)

y 
umpliéndose que la traspuesta de KG
i j es igual a KG

ji .

En un estudio en fre
uen
ia, si las fuerzas de iner
ia son 
onsideradas se añaden a la e
ua
ión

de equilibrio (5.34) 
omo se muestra a 
ontinua
ión

[
Fi

F j

]G

= (KG
i j −ω2MG

i j)

[
ui

u j

]G

(5.41)

donde la matriz de masa MG
i j del elemento i j está de�nida en el 
entro de gravedad G y es la

suma de dos matri
es, una (Mt)
G
i j aso
iada a la iner
ia de trasla
ión y otra (Mr)

G
i j aso
iada a la

iner
ia a rota
ión [FK93℄. Ambas matri
es son simétri
as, de dimensiones 12×12, y se pueden

dividir en 
uatro submatri
es 6×6, de manera que puede es
ribirse

(Mt)
G
i j =

[
(Mt)

G
ii (Mt)

G
i j

(Mt)
G
ji (Mt)

G
j j

]
; (Mr)

G
i j =

[
(Mr)

G
ii (Mr)

G
i j

(Mr)
G
ji (Mr)

G
j j

]
(5.42)

Al ser ambas matri
es simétri
as, se 
umple que para las submatri
es fuera de las diagonales

prin
ipales en (5.42) la traspuesta de (Mt)
G
i j es igual a (Mt)

G
ji, del mismo modo que la traspuesta

de (Mr)
G
i j es igual a (Mr)

G
ji. Se es
riben, por tanto, a 
ontinua
ión las submatri
es que forman

la matriz de masa aso
iada a la trasla
ión

(Mt)
G
ii =




mt
11 0 0 0 mt

15 0

0 mt
22 0 mt

24 0 0

0 0 mt
33 0 0 0

0 mt
42 0 mt

44 0 0

mt
51 0 0 0 mt

55 0

0 0 0 0 0 0




(5.43)

(Mt)
G
i j =




mt
17 0 0 0 mt

111 0

0 mt
28 0 mt

210 0 0

0 0 mt
39 0 0 0

0 mt
48 0 mt

410 0 0

mt
57 0 0 0 mt

511 0

0 0 0 0 0 0




(5.44)

(Mt)
G
j j =




mt
77 0 0 0 mt

711 0

0 mt
88 0 mt

810 0 0

0 0 mt
99 0 0 0

0 mt
108 0 mt

1010 0 0

mt
117 0 0 0 mt

1111 0

0 0 0 0 0 0




(5.45)

y también las submatri
es que 
omponen la matriz de masa rela
ionada 
on la rota
ión
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(Mr)
G
ii =




mr
11 0 0 0 mr

15 0

0 mr
22 0 mr

24 0 0

0 0 0 0 0 0

0 mr
42 0 mr

44 0 0

mr
51 0 0 0 mr

55 0

0 0 0 0 0 mr
66




(5.46)

(Mr)
G
i j =




mr
17 0 0 0 mr

111 0

0 mr
28 0 mr

210 0 0

0 0 0 0 0 0

0 mr
48 0 mr

410 0 0

mr
57 0 0 0 mr

511 0

0 0 0 0 0 mr
612




(5.47)

(Mr)
G
j j =




mr
77 0 0 0 mr

711 0

0 mr
88 0 mr

810 0 0

0 0 0 0 0 0

0 mr
108 0 mr

1010 0 0

mr
117 0 0 0 mr

1111 0

0 0 0 0 0 mr
1212




(5.48)

Las expresiones de todos y 
ada uno de los elementos no nulos de las submatri
es se es
riben

a 
ontinua
ión. Primero se presentan los de la matriz de masa trasla
ional y posteriormente

lo de la matriz de masa rota
ional. Por la 
ara
terísti
a de simetría, se es
riben úni
amente

los elementos no nulos de la diagonal prin
ipal y del triángulo superior de las ambas matri
es

(5.42)
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mt
11 =

ρ AL

210(1+φy)2

(
78+147φy +70φ2

y

)
(5.49a)

mt
15 =

ρ AL2

840(1+φy)2

(
44+77φy +35φ2

y

)
(5.49b)

mt
17 =

ρ AL

210(1+φy)2

(
27+63φy +35φ2

y

)
(5.49
)

mt
111 =

−ρ AL2

840(1+φy)2

(
26+63φy +35φ2

y

)
(5.49d)

mt
22 =

ρ AL

210(1+φx)2

(
78+147φx +70φ2

x

)
(5.49e)

mt
24 =

−ρ AL2

840(1+φx)2

(
44+77φx +35φ2

x

)
(5.49f)

mt
28 =

ρ AL

210(1+φx)2

(
27+63φx +35φ2

x

)
(5.49g)

mt
210 =

ρ AL2

840(1+φx)2

(
26+63φx +35φ2

x

)
(5.49h)

mt
33 =

ρ AL

3
(5.49i)

mt
39 =

ρ AL

6
(5.49j)

mt
44 =

ρ AL3

840(1+φx)2

(
8+14φx +7φ2

x

)
(5.49k)

mt
48 =

−ρ AL2

840(1+φx)2

(
26+63φx +35φ2

x

)
(5.49l)

mt
410 =

−ρ AL3

840(1+φx)2

(
6+14φx +7φ2

x

)
(5.49m)

mt
55 =

ρ AL3

840(1+φy)2

(
8+14φx +7φ2

x

)
(5.49n)

mt
57 =

ρ AL2

840(1+φy)2

(
26+63φy +35φ2

y

)
(5.49ñ)

mt
511 =

−ρ AL3

840(1+φy)2

(
6+14φy +7φ2

y

)
(5.49o)

mt
77 =

ρ AL

210(1+φy)2

(
78+147φy +70φ2

y

)
(5.49p)

mt
711 =

−ρ AL2

840(1+φy)2

(
44+77φy +35φ2

y

)
(5.49q)

mt
88 =

ρ AL

210(1+φx)2

(
78+147φx +70φ2

x

)
(5.49r)

mt
810 =

ρ AL2

840(1+φx)2

(
44+77φx +35φ2

x

)
(5.49s)

mt
99 =

ρ AL

3
(5.49t)

mt
1010 =

ρ AL3

840(1+φx)2

(
8+14φx +7φ2

x

)
(5.49u)

mt
1111 =

ρ AL3

840(1+φy)2

(
8+14φx +7φ2

x

)
(5.49v)
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mr
11 =

6ρ Iy

5(1+φy)2 L
(5.50a)

mr
15 =

−ρ Iy

10(1+φy)2
(−1+5φy) (5.50b)

mr
17 =

−6ρ Iy

5(1+φy)2 L
(5.50
)

mr
111 =

−ρ Iy

10(1+φy)2
(−1+5φy) (5.50d)

mr
22 =

6ρ Ix

5(1+φx)2 L
(5.50e)

mr
24 =

ρ Ix

10(1+φx)2
(−1+5φx) (5.50f)

mr
28 =

−6ρ Ix

5(1+φx)2 L
(5.50g)

mr
210 =

ρ Ix

10(1+φx)2
(−1+5φx) (5.50h)

mr
44 =

ρ Ix L

30(1+φx)2

(
4+5φx +10φ2

x

)
(5.50i)

mr
48 =

−ρ Ix

10(1+φx)2
(−1+5φx) (5.50j)

mr
410 =

ρ Ix L

30(1+φx)2

(
−1−5φx +5φ2

x

)
(5.50k)

mr
55 =

ρ Iy L

30(1+φy)2

(
4+5φy +10φ2

y

)
(5.50l)

mr
57 =

ρ Iy

10(1+φy)2
(−1+5φy) (5.50m)

mr
511 =

ρ Iy L

30(1+φy)2

(
−1−5φy +5φ2

y

)
(5.50n)

mr
66 =

ρ Iz L

3
(5.50ñ)

mr
612 =

ρ Iz L

6
(5.50o)

mr
77 =

6ρ Iy

5(1+φy)2 L
(5.50p)

mr
711 =

ρ Iy

10(1+φy)2
(−1+5φy) (5.50q)

mr
88 =

6ρ Ix

5(1+φx)2 L
(5.50r)

mr
810 =

−ρ Ix

10(1+φx)2
(−1+5φx) (5.50s)

mr
1010 =

ρ Ix L

30(1+φx)2

(
4+5φx +10φ2

x

)
(5.50t)

mr
1111 =

ρ Iy L

30(1+φy)2

(
4+5φy +10φ2

y

)
(5.50u)

mr
1212 =

ρ Iz L

3
(5.50v)
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5.4 A
oplamiento entre 
uerpo rígido y MEF

Se ha expli
ado en la se

ión 5.2 
ómo 
onsiderar 
uerpos in�nitamente rígidos a través del

método de elementos de 
ontorno para apli
arlo prin
ipalmente al estudio de 
imenta
iones,

a las 
uales se les puede suponer di
ha hipótesis. Por otro lado, pensando en el estudio de

estru
turas de edi�
a
ión, se ha presentado en la se

ión 5.3 una manera de modelarlas usando el

método de elementos �nitos, 
onsiderando en éstas la deforma
ión por 
ortante y suponiéndolas


omo vigas homogéneas y elásti
as.

elementos �nitos

edi�
io

nodo inferior


imenta
ión rígida

punto de referen
ia

Figura 5.6: A
oplamiento entre 
imenta
ión rígida y edi�
io.

El siguiente paso es el a
oplamiento entre ambos, 
imenta
ión y superestru
tura, que se realiza

a través de 
onsiderar la 
ompatibilidad 
inemáti
a y el equilibrio de fuerzas entre el punto de

referen
ia de la 
imenta
ión rígida y el nodo de la base del edi�
io, ver �gura 5.6. Esto quiere

de
ir, por un lado, que el punto de referen
ia y el nodo de la base del edi�
io tienen igual

ve
tor desplazamiento en módulo y sentido. Por 
ontra, el ve
tor de fuerzas en ambos puntos

son iguales en módulo pero de sentido 
ontrario.

uref = u ; Fref =−F (5.51)

Finalmente se in
luyen las e
ua
iones de equilibrio (5.41) de 
ada elemento �nito i j en los siste-

mas de e
ua
iones (5.23) o (5.24), dependiendo de si la naturaleza del terreno es vis
oelásti
a

o poroelásti
a respe
tivamente, teniendo en 
uenta la 
ompatibilidad 
inemáti
a y el equilibrio

entre el punto de referen
ia y el nodo de la base.

5.5 Valida
ión

La valida
ión del modelo a
oplado MEC�MEF que se ha presentado en este 
apítulo se llevó a


abo en varias fases para asegurar que las nuevas 
ara
terísti
as del mismo están bien imple-

mentadas. Primero se realizó valida
ión para 
on�rmar la 
orre
ta in
lusión de las 
ondi
iones

de 
uerpo rígido, presentada en la se

ión 5.2, en el modelo de elementos de 
ontorno. Pos-

teriormente se validó el elemento �nito tipo viga Timoshenko de dos nodos, 
uya formula
ión

puede verse en el apartado 5.3, para asegurar que las matri
es de rigidez y masa elementales

son 
orre
tas. Finalmente, se validan ambas formula
iones simultáneamente, así 
omo el a
o-

plamiento del modelo de elementos �nitos 
on las regiones rígidas del modelo de elementos de


ontorno.
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5.5 Valida
ión

5.5.1 Condi
iones de 
uerpo rígido. Fa
tores de intera

ión 
inemáti
a de

grupos de pilotes in
linados

Para validar la formula
ión presentada en 5.2 se 
omparan los resultados en términos de los

fa
tores de intera

ión 
inemáti
a de grupos de pilotes in
linados 2×2 
on un modelo MEC�

MEF, ver p.e. [PAMS10, MPA

+
14℄. Este modelo MEC�MEF ha sido validado previamente por


ompara
ión 
on otros modelos existentes en la bibliografía, y frente a aquellos tiene la ventaja

de estar disponible por haber sido formulado en el grupo de investiga
ión en el que se ha

desarrollado esta tesis. A
larar que en este apartado de valida
ión sólo interviene la parte de

elementos de 
ontorno del modelo presentado, (el elemento �nito tipo viga Timoshenko y su

a
oplamiento 
on las regiones rígidas no se usan) por lo que nos referiremos al modelo 
on las


ondi
iones de 
uerpo rígido 
omo MEC�MEC.

In
orporar las 
ondi
iones de 
uerpo rígido dentro del modelo de elementos de 
ontorno per-

mite, por ejemplo, modelar el en
epado de grupos de pilotes 
omo un dominio perfe
tamente

rígido, mientras que los pilotes y el terreno son 
onsiderados 
omo medios lineales, isótropos,

homogéneos y vis
oelásti
os. Como valida
ión de la 
orre
ta introdu

ión de di
has 
ondi
io-

nes, se estudia la respuesta dinámi
a de grupos de pilotes in
linados unidos por un en
epado

rígido y sin masa, 
omparando los fa
tores de intera

ión 
inemáti
a obtenidos apli
ando la

formula
ión presentada en el apartado 5.2, y a través de un modelo a
oplado de elementos

de 
ontorno y elementos �nitos [PAMS10, MPA

+
14℄. Mientras que el primero modela terreno,

en
epado y pilote mediante elementos de 
ontorno, el segundo usa el método de elementos

de 
ontorno para modelar el suelo y la presen
ia de los pilotes se introdu
e a través del uso

elementos �nitos. En la �gura 5.7 se muestra la malla de elementos de 
ontornos del pilote

in
linado y parte de la super�
ie libre. Sólo es ne
esario dis
retizar un 
uarto de la geometría

total ya que el 
ódigo permite tener en 
uenta las 
ondi
iones de simetría del problema.

Figura 5.7: Malla de elementos de 
ontorno para el 
ál
ulo de fa
tores de intera

ión 
inemáti
a

de grupos de pilotes 2×2. Se muestra un 
uarto de la geometría ya que el 
ódigo permite tener

en 
uenta las 
ondi
iones de simetría.

El problema estudiado in
luye diferentes 
on�gura
iones de grupos 2×2 de pilotes in
linados,

simétri
os 
on respe
to a los planos yz y xz, hin
ados en un semiespa
io y 
uyas 
abezas se
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onsideran unidas mediante un en
epado rígido sin masa 
ompletamente libre de 
onta
to 
on

el suelo, ver �gura 5.8.

y, v

z, w

en
epado

L

d

Onda S

α

super�
ie libre

s/2 s

b

x, u

y, v

Figura 5.8: Esquema de la geometría de grupo 2×2 de pilotes in
linados. Corte transversal del

terreno y vista superior.

Todos los pilotes son del mismo material y tienen idénti
as 
ara
terísti
as geométri
as. En la

�gura 5.8 pueden verse los prin
ipales parámetros geométri
os del sistema, siendo L la longitud

del pilote y d el diámetro, s la distan
ia entre 
entros de pilotes adya
entes y α el ángulo entre

eje del pilote y la verti
al. El semian
ho del en
epado (b en la �gura 5.8) se utilizará para el


ál
ulo de los fa
tores de intera

ión 
inemáti
a rela
ionados 
on el giro del en
epado. En este

estudio se ha adoptado el valor b = s. Se han utilizado dos valores para el ratio entre el módulo

de elasti
idad del pilote Ep y del suelo Es, por tanto se 
onsideran Ep/Es = 103
(suelo blando) y

Ep/Es = 102
(suelo duro). En la tabla 5.1 se muestran las propiedades que son �jas para todos

los 
asos estudiados, siendo L/d la esbeltez del pilote, βs el 
oe�
iente de amortiguamiento

del terreno, ρs/ρp el ratio entre las densidades del suelo y el pilote, νs y νp los 
oe�
ientes de

Poisson del suelo y el pilote respe
tivamente.

Tabla 5.1: Parámetros del sistema 
omunes a todos los 
asos de grupos de pilotes 2×2 estu-

diados

L/d βs ρs/ρp νs νp

15.00 0.05 0.70 0.40 0.25

Como ex
ita
ión se 
onsideran ondas transversales tipo S 
on in
iden
ia verti
al que produ
en

desplazamientos en la dire

ión del eje x o y. Se 
al
ulan para 
ada 
aso los fa
tores de

intera

ión 
inemáti
a en términos del desplazamiento transversal Iu o Iv y de giro Iθy
o Iθx

,

medidos ambos en el 
entro del en
epado rígido y normalizados 
on el desplazamiento de 
ampo

libre en la super�
ie uff o vff, por tanto se de�ne

Iu =
u

uff

; Iθy
=

bθy

uff

(5.52)

Iv =
v

vff

; Iθx
=

bθx

vff

(5.53)

Se estudiarán diferentes 
on�gura
iones para un grupo 2×2, en los que se varían el ángulo de

in
lina
ión de los pilotes y la rela
ión s/d. En la tabla 5.2 se re
ogen di
hos 
asos mostrando 
on
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diagramas la dire

ión del movimiento de ex
ita
ión 
on respe
to a la dire

ión de in
lina
ión

de los pilotes, así 
omo los valores de los ángulos de in
lina
ión θ y la rela
ión s/d. Notar que

para el 
aso en el que el α = 20◦, los pilotes se in
linan en la dire

ión de las diagonales del

en
epado.

Tabla 5.2: Casos grupos 2×2

s/d 5.0 5.0 10.0 10.0 10.0

α 10◦ 10◦ 20◦ 30◦ 30◦

En las �guras 5.9, 5.10 y 5.11 se representan la parte real e imaginaria de los fa
tores de

intera

ión 
inemáti
a de di
has 
on�gura
iones frente a la fre
uen
ia adimensional ao =ω d/cs,

siendo ω la fre
uen
ia de ex
ita
ión y cs la velo
idad de propaga
ión de las ondas transversales

en el semiespa
io. Se indi
a en los grá�
os de 
ada �gura 
ada 
aso 
on un pequeño esquema,

y mediante una etiqueta los valores del ángulo α y la rela
ión s/d. Se representan 
on línea


ontinua los resultados para el modelo de elementos de 
ontorno que in
orpora las 
ondi
iones

de 
uerpo rígido, etiquetados 
omo MEC�MEC, mientras la línea dis
ontinua 
orresponde a los

fa
tores obtenidos 
on el modelo de elementos de 
ontorno y elementos �nitos MEC�MEF. Los


olores usados diferen
ian los resultados según la rela
ión entre los módulos de elasti
idad del

pilote y el suelo, siendo azul para el suelo blando (Ep/Es = 103) y verde para el suelo más duro

(Ep/Es = 102).

Se observa en todas las grá�
as que los resultados de ambos modelos muestran gran 
on
or-

dan
ia entre sí. Los errores relativos no superan el 8% en términos de la rota
ión y están por

debajo del 3% en términos de trasla
ión.

5.5.2 Elemento �nito tipo viga Timoshenko

Es ne
esario validar también la formula
ión de las matri
es de rigidez y de masas del elemento

�nito tipo viga, presentadas en el apartado 5.3. El problema de valida
ión trata de una viga

de longitud 30 metros 
on una se

ión transversal 
omo la que se muestra en la �gura 5.12.

Se observa que di
ha se

ión es simétri
a sólo respe
to al eje x y que por la forma en U de

la misma existe una ex
entri
idad ex, ya que el 
entro de esfuerzos 
ortantes C y el 
entro de

gravedad G no son 
oin
identes.

Las propiedades de di
ha se

ión transversal se resumen en la tabla 5.3, siendo Ix, Iy los mo-

mentos de iner
ia, J el módulo de torsión, A el área total, ex, ey las ex
entri
idades y κ ′
x, κ ′

y los

fa
tores de 
orre

ión de 
ortante.

Un extremo de la viga se 
onsidera empotrado sobre una base rígida 
on los desplazamientos y

giros 
ompletamente restringidos, estando el extremo opuesto 
ompletamente libre. Di
ha base

rígida es sometida a un desplazamiento unitario en dire

ión del eje y, que indu
e �exión y

torsión a lo largo de la viga. Se estudia el 
omportamiento dinámi
o, por un lado 
on el modelo

de elementos �nitos tipo viga presentado en el a
tual 
apítulo, y se 
omparan los resultados
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Figura 5.9: Fa
tores intera

ión 
inemáti
a de grupo 2×2 de pilotes 
on ángulo de in
lina
ión

10

◦
y rela
ión s/d = 5, en términos de la parte real e imaginaria del desplazamiento horizontal

y giro de �exión, 
onsiderando onda transversal de tipo S vibrando tanto en dire

ión paralela

al eje x 
omo al eje y.

Tabla 5.3: Propiedades de la se

ión transversal U para la de�ni
ión de los elementos �nitos

Ix Iy J A ex ey κ ′
x κ ′

y(
N ·m2

) (
N ·m2

) (
N ·m4

) (
m

2
)

(m) (m)

4.8515625 2.035546875 2.79898 5.625 0.417639 0.0 0.789799 0.636621
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Figura 5.10: Fa
tores intera

ión 
inemáti
a de grupo 2×2 de pilotes 
on ángulo de in
lina
ión

20

◦
y rela
ión s/d = 10, en términos de la parte real e imaginaria del desplazamiento horizontal

y giro de �exión, 
onsiderando onda transversal de tipo S vibrando tanto en dire

ión paralela

al eje x 
omo al eje y.


on los obtenidos 
on el 'software' de elementos �nitos ANSYS

®
y también 
on los 
al
ulados

ha
iendo uso del modelo de elementos de 
ontorno. La malla de elementos de 
ontorno usada

se muestra a la izquierda de la �gura 5.13, notar que se presenta sólo la mitad de la misma

ya que es posible tener en 
uenta 
ondi
iones de simetría. A la dere
ha de la misma �gura se

muestra un esquema de la dis
retiza
ión de elementos �nitos usada tanto por ANSYS

®

omo

para el modelo de viga Timoshenko, que 
onsiste en dividir la viga desde un extremo al otro de

la misma en 30 elementos de dos nodos 
olo
ados 
onse
utivamente sobre la línea imaginaria

que une los 
entros de gravedad de la se

iones transversales.

Las propiedades del material de la viga se resumen en la tabla 5.4, siendo µ el módulo de

rigidez transversal, ρ la densidad lineal equivalente, ν el módulo de Poisson y β el 
oe�
iente

de amortiguamiento.

Tabla 5.4: Propiedades del material de la viga

µ ρ ν β(
N/m2

)
(kg/m)

9.77 ·109 4.05 ·104
0.33 0.05

Se presentan los resultados de esta valida
ión en términos del desplazamiento transversal v y el

giro de torsión θz, ambos medidos en la punta, normalizados 
on el desplazamiento unitario en

la base vbr. En la �gura 5.14 se muestra la respuesta en fre
uen
ia en términos del módulo de

estas dos variables, siendo b el semian
ho de la se

ión en dire

ión y (b=1.50 m), ver �gura

5.12. La línea de 
olor azul representa los resultados obtenidos 
on el modelo de elementos de


ontorno (MEC), mientras que los del modelo de elementos �nitos se muestran en verde para

ANSYS y en rojo (MEF) para los 
al
ulados 
on el modelo de viga presentado en la se

ión
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Figura 5.11: Fa
tores intera

ión 
inemáti
a de grupo 2×2 de pilotes 
on ángulo de in
lina
ión

30

◦
y rela
ión s/d = 10, en términos de la parte real e imaginaria del desplazamiento horizontal

y giro de �exión, 
onsiderando onda transversal de tipo S vibrando tanto en dire

ión paralela

al eje x 
omo al eje y.

5.3 del a
tual 
apítulo.

Se observa que los resultados de ANSYS

®
y el MEF, tanto en términos de �exión 
omo de

torsión, son prá
ti
amente 
oin
identes tanto para el valor de las amplitudes 
omo para el valor

de las fre
uen
ias naturales del sistema. Con respe
to a los resultados del MEC también se

muestra una gran 
on
ordan
ia aunque se apre
ian diferen
ias a fre
uen
ias más altas, a partir

de 25 Hz para la �exión y de 15 Hz para la torsión. Se estima que las diferen
ias en
ontradas

entre los modelos viga (aquí denominados MEF y ANSYS

®
respe
tivamente) y el modelo MEC
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Figura 5.12: Geometría de la se

ión transversal en forma de U de la viga.

de medio 
ontinuo pueden venir generadas por el he
ho de que ninguno de los modelos viga

in
orporan en alabeo de las se

iones que tiene lugar en este problema. La gran 
oin
iden
ia 
on

los resultados obtenidos usando ANSYS

®
y la buena 
on
ordan
ia 
on los del MEC, demuestran

que las matri
es de rigidez y masa presentadas están bien formuladas, por lo que queda validado

el modelo de elementos �nitos tipo viga Timoshenko presentado en el apartado 5.3. Viendo la

grá�
a superior en la �gura 5.14, se observa 
omo la �exión se ve modi�
ada en torno a la

segunda fre
uen
ia fundamental apare
iendo un doble pi
o indu
ido por la segunda fre
uen
ia

fundamental de torsión.

Ini
ialmente se eligió la malla de elementos �nitos 
on 30 elementos de manera que 
oin
idiera


on el número de divisiones que la malla de elementos de 
ontorno en la dire

ión verti
al.

Sin embargo, es interesante ver 
omo varían los resultados del modelo MEF a medida que

se redu
e el número de divisiones. Así, se presentan en la �gura 5.15 los resultados del MEF


on distinto número de divisiones, de nuevo en términos del desplazamiento transversal y la

torsión en el extremo libre de la viga. En di
ha �gura pueden verse estos resultados para


uatro dis
retiza
iones MEF de la viga, 30 elementos (linea roja), 15 elementos (linea azul),

10 elementos (linea verde) y 5 elementos (linea gris). Redu
iendo el número de divisiones a

la mitad o a la ter
era parte no supone una varia
ión notable en los resultados, aunque en el


aso de 10 elementos se observan diferen
ias a fre
uen
ias a partir de 40 Hz. En el 
aso de 5

elementos las diferen
ias se apre
ian a partir de 15 Hz y a fre
uen
ias altas, a partir de 25 Hz,

se demuestra la ne
esidad de un mayor re�namiento.

5.5.3 Valida
ión del modelo MEC�MEF 
onjuntamente

Para la valida
ión del modelo en su 
onjunto, así 
omo del a
oplamiento entre los elementos

�nitos y la región rígida modelada 
on elementos de 
ontorno, se ha es
ogido un problema de

intera

ión suelo estru
tura en el que se estudia un edi�
io 
imentado en un suelo 
onsiderado


omo un semiespa
io vis
oelásti
o. La �gura 5.16 muestra la geometría y las dimensiones del

edi�
io, de 100 metros de altura y 
on una se

ión transversal en forma de U. La superestru
-

tura se aloja en el semiespa
io a través de una 
imenta
ión embebida en el terreno, que será
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Elementos de 
ontorno Elementos �nitos

Figura 5.13: A la izquierda malla de elementos de 
ontorno para la viga 
on se

ión transversal

en U. Sólo es ne
esario mallar la mitad de la misma ya que se tienen en 
uenta las 
ondi
iones

de simetría. A la dere
ha esquema de la dis
retiza
ión de elementos �nitos.


onsiderada in�nitamente rígida (�gura 5.17).

Las propiedades es
ogidas para modelar la superestru
tura 
omo una viga Timoshenko son:

el módulo de rigidez transversal equivalente µ = 3.0 ·108
N/m

2
, la densidad lineal equivalente

ρ = 2.7 · 105
kg/m (
orrespondiente a la densidad espe
i�
a que se 
onsidera usualmente de

0.3t/m3
), el 
oe�
iente de Poisson ν = 0.2 y el 
oe�
iente de amortiguamiento ξ = 0.05. Con

estas propiedades, la fre
uen
ias naturales en base rígida para este edi�
io en los planos xz e

yz son respe
tivamente f xz
br = 0.564Hz (Txz

br = 1.773s) y f
yz
br = 0.920Hz (T

yz
br = 1.087s), valores

que siguen la línea de la expresión propuesta por Goel and Chopra [GC97℄ para 
al
ular el

periodo fundamental de edi�
ios de hormigón armado. La tabla 5.5 presenta las propiedades de

la se

ión transversal, siendo Ix, Iy los momentos de iner
ia, J el módulo de torsión, A el área,

ex, ey las ex
entri
idades y κ ′
x, κ ′

y los fa
tores de 
orre

ión de 
ortante.

Tabla 5.5: Propiedades de la se

ión transversal del edi�
io para de�nir los elementos �nitos

Ix Iy J A ex ey κ ′
x κ ′

y(
N ·m2

) (
N ·m2

) (
N ·m4

) (
m2
)

(m) (m)

130000.0 40763.9 84281.6 900.0 2.37039 0.0 0.886399 0.748341

El semiespa
io que de�ne la región del terreno donde se en
uentra 
imentado el edi�
io se


ara
teriza por los siguientes parámetros: velo
idad de propaga
ión de la onda transversal

cs = 300m/s, 
oe�
iente de Poisson ν = 0.3, densidad ρ = 1620kg/m
3
y 
oe�
iente de amorti-

guamiento ξ = 0.05. Estas propiedades se 
orresponden 
on el medio vis
oelásti
o equivalente

al terreno sin agua (se
o) presentado en Todorovska and Al Rjoub [TAR06a℄.

Tanto en el 
aso del terreno 
omo de la estru
tura, el amortiguamiento se introdu
e a través
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Figura 5.14: Resultados de valida
ión para una viga de se

ión transversal en U y longitud

30 metros empotrada base rígida en términos del desplazamiento transversal v/vbr y de la

torsión θz b/vbr en el extremo libre. Se 
omparan los resultados del modelo de elementos �nitos

presentado (MEF), 
on los obtenidos 
on ANSYS

®
y 
on el modelo de elementos de 
ontorno

(MEC).

del modulo de rigidez transversal equivalente de tipo 
omplejo e independiente de la fre
uen
ia

de la forma µ = Re[µ ](1+2ξ i), siendo i la unidad imaginaria.

Con el �n de validar el modelo que se presenta en este 
apítulo, los resultados se 
omparan

frente a los obtenidos 
on el modelo de elementos de 
ontorno, más riguroso, presentado en en el


apítulo 2, que ha sido validado 
on anterioridad y 
on el que se han realizado diversos trabajos,

por ejemplo [MAD02, MAD04, MAG05, AMD06℄. Usando éste para resolver el problema, todas

las regiones que de�nen el problema (terreno, 
imenta
ión y edi�
io) se modelan 
omo medios


ontinuos, lineales, homogéneos, isótropos y vis
oelásti
os. La �gura 5.17(a) muestra la malla

de elementos de 
ontorno usada en este 
aso. El 
ódigo es 
apaz de tener en 
uenta las

propiedades de simetría del problema, por lo que sólo es ne
esario des
retizar la mitad de la

geometría. El tamaño del elemento debe ser más pequeño que la semi�longitud de onda en

la región 
orrespondiente para la fre
uen
ia más alta, en este 
aso 10 Hz. La extensión de la

super�
ie libre del terreno y el número de elementos se de�nen después de realizar un análisis

de 
onvergen
ia de las variables de interés obtenidas 
on diferentes mallados. Las propiedades

del material de la 
imenta
ión 
oin
iden 
on los parámetros dados anteriormente para la región

del edi�
io, ex
epto para el valor del módulo de rigidez transversal, el 
ual se asume 
ien

ve
es más rígido que el módulo de rigidez equivalente de la viga Timoshenko que modela el

edi�
io. Por otro lado, la malla usada para resolver el problema 
on el modelo de elementos

de 
ontorno y elementos �nitos (MEC�MEF) es presentada en la �gura 5.17(b). El mallado de

la super�
ie libre y de la super�
ie 
imenta
ión�terreno es exa
tamente igual a la usada por el
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5.5 Valida
ión

modelo de elementos de 
ontorno multidominio (�gura 5.17(a)). La parte enterrada del edi�
io

se modela en este 
aso 
omo un dominio perfe
tamente rígido usando la formula
ión expuesta

en la se

ión 5.2, por lo que sólo es ne
esario mallar 
on elementos de 
ontorno las super�
ies

rígidas y la super�
ie libre del terreno. La superestru
tura se dis
retiza ahora usando elementos

�nitos Timoshenko de dos nodos (10 elementos de 10 metros de longitud 
ada uno). El punto

de referen
ia del 
uerpo rígido se sitúa en la parte superior del dominio de la 
imenta
ión,

exa
tamente sobre el eje x de simetría y 
oin
idiendo 
on el 
entro de gravedad G de la se

ión

transversal (ver detalle en la �gura 5.17(b)). Los resultados obtenidos 
onsiderando el edi�
io

en base rígida se presentan siempre en las grá�
as de este apartado 
omo referen
ia para medir

los efe
tos de intera

ión suelo�estru
tura. La respuesta en base rígida se 
al
ula usando el

modelo de elementos �nitos expli
ado en el apartado 5.3, sometiendo a di
ha base rígida al


orrespondiente desplazamiento armóni
o unitario.

(a)

MEC multidominio

Malla EC de la 
imenta
ión

Malla EC del edi�
io

Malla EC del terreno

y, v

x, u

z, w

vff (S�wave)

wff (P�wave)

G

Point of reference

(b)

Modelo MEC�MEF

y, v

x, u

z, w

vff (S�wave)

wff (P�wave)

Malla EC de la 
imenta
ión rígida

Modelo EF del edi�
io

Figura 5.17: (a) Malla de elementos de 
ontorno para el modelo multidominio. (b) Malla de

elementos de 
ontorno y elementos �nitos para el modelo MEC�MEF y detalle del a
oplamiento

edi�
io�
imenta
ión en el punto de referen
ia.

La �gura 5.18 muestra el módulo del desplazamiento verti
al w en la base y la parte alta

del edi�
io 
onsiderando 
omo ex
ita
ión una onda P 
on in
iden
ia verti
al, y siendo wff el

desplazamiento verti
al de 
ampo libre. Por otro lado, si el sistema está sujeto a la a

ión de

una onda S verti
al que indu
e desplazamientos en dire

ión y, las variables de interés son el

desplazamiento transversal v y el giro de �exión θx alrededor del eje x, y el giro de torsión θz

debido a la ex
entri
idad ex de la se

ión transversal. La �gura 5.19 muestra las fun
iones de

respuesta en fre
uen
ia de estas tres variables, medidas en la base y la parte alta del edi�
io

y normalizadas 
on el desplazamiento de 
ampo libre vff, siendo a el semian
ho de la se

ión

(a = 20m).

Las �guras 5.18 y 5.19 muestran buena 
on
ordan
ia entre el modelo MEC multidominio y el

modelo MEC�MEF. Las diferen
ias son del orden del 1.5% alrededor de la primera fre
uen
ia

de resonan
ia del desplazamiento verti
al al estar el sistema sometido a una onda P; y del 2%

y 3% en torno a la primera y segunda fre
uen
ia de resonan
ia del desplazamiento horizontal

y el giro de �exión respe
tivamente 
uando la ex
ita
ión es una onda S. Las diferen
ias entre

ambos modelos para el giro de torsión son del orden del 16% alrededor de la primera fre
uen
ia

de resonan
ia. Estas diferen
ias en la torsión apare
en prin
ipalmente por dos razones: a) la

torsión no uniforme, la 
ual no es tenida en 
uenta por el modelo de elementos �nitos, y b)

los resultados en términos de �exión y torsión del modelo MEC multidominio son obtenidos

indire
tamente a través de los nodos de la malla.

Ambos modelos son 
apa
es de 
apturar los efe
tos de intera

ión suelo�estru
tura, evidentes
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Figura 5.18: Comparativa entre los modelos MEC mutidominio y MEC�MEF. Fun
iones de

respuesta en fre
uen
ia en la base y la parte alta del edi�
io en términos del desplazamiento

verti
al w, normalizado 
on el de 
ampo libre wff, debido a la a

ión de una onda P 
on

in
iden
ia verti
al.

en las diferen
ias 
on la respuesta en base rígida del edi�
io (representada 
on linea negra

dis
ontinua). Se 
umple siempre que todas las fre
uen
ias naturales del sistema son más bajas

que las 
orrespondientes a las obtenidas en base rígida, 
omo es de esperar 
uando tiene lugar

la intera

ión suelo�estru
tura. Por ejemplo, las fre
uen
ias fundamentales del desplazamiento

verti
al observadas para la onda P (�gura 5.18 dere
ha) y del desplazamiento horizontal para la

onda S (�gura 5.19 arriba dere
ha) se redu
en un 11% y un 15% respe
tivamente. Al mismo

tiempo, el he
ho de 
onsiderar el edi�
io 
imentado en un semiespa
io vis
oelásti
o aporta al

sistema amortiguamiento (amortiguamiento geométri
o y amortiguamiento del material), lo que

se tradu
e en modos 
on mayor amortiguamiento. Por tanto, la amplitud de los desplazamientos

verti
ales en la parte alta del edi�
io produ
idos por la onda P se redu
e en un 77% 
uando

existe intera

ión suelo�estru
tura. El desplazamiento y el giro de �exión, debidos a la onda S,

en la parte alta se redu
en un 13% y 18% respe
tivamente. Como es de esperar, estos efe
tos

se a
entúan a fre
uen
ias altas y las mayores diferen
ias se observan al 
omparar la respuesta

de torsión en la parte alta.

Notar que para el 
aso de valida
ión estudiado en este apartado, al apli
ar el modelo BEM

multidominio, el número de grados de libertad del problema para la malla mostrada as
iende a

10173. Por 
ontra, 
on el modelo MEC�MEF di
ho número se queda en 5091. Es evidente el

des
enso en el número de grados de libertad entre un modelo y otro, y en 
onse
uen
ia el ahorro

en tiempo y re
ursos de 
omputa
ión. Además es fá
il intuir que el ahorro será más a
entuado,

por ejemplo, 
uando se trate 
on problemas en los que intervienen varios estru
turas 
er
anas.

5.6 Con
lusiones

Se ha presentado en este 
apítulo un modelo MEC�MEF en el dominio de la fre
uen
ia para

el estudio de la intera

ión suelo�estru
tura y estru
tura�suelo�estru
tura en problemas que

involu
ran estru
turas de edi�
a
ión sobre 
imenta
iones para las 
uales puede asumirse una

rigidez mu
ho mayor que la del suelo que las aloja. Esta simpli�
a
ión sobre la 
imenta
ión

permite redu
ir el número de grados de libertad del problema modelando la misma 
omo un

sólido indeformable. También, al modelar la superestru
tura 
omo viga Timoshenko por medio

de elementos �nitos de dos nodos se 
onsigue una importante redu

ión del 
oste 
omputa
ional

para di
ho análisis.
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Figura 5.19: Comparativa entre los modelos MEC mutidominio y MEC�MEF. Fun
iones de

respuesta en fre
uen
ia en la base y la parte alta del edi�
io en términos del desplazamiento

transversal v, giro de �exión θx y giro de torsión θz normalizados 
on el desplazamiento de


ampo libre v
�

debidos a una onda S 
on in
iden
ia verti
al.

Un modelo de elementos de 
ontorno previo ha sido mejorado para in
luir el a
oplamiento entre

regiones rígidas y vis
oelásti
as o poroelásti
as. Se ha implementado también un modelo de

elementos �nitos tipo viga Timoshenko a
oplado a di
has regiones rígidas. El elemento �nito

para modelar la superestru
tura 
omo una viga Timoshenko ha sido formulado de manera que

se tiene en 
uenta la ex
entri
idad de la se

ión y en 
onse
uen
ia la respuesta torsional que

ésta produ
e.

Se han obtenido resultados para validar de manera separada las mejoras implementadas en el

modelo, así 
omo de su 
onjunto. Estos han demostrado que la implementa
ión es 
orre
ta,

además de asegurar que el modelo tiene la 
apa
idad de reprodu
ir los efe
tos de la respues-

ta torsional debida a la ex
entri
idad así 
omo los prin
ipales aspe
tos de los problemas de

intera

ión suelo�estru
tura.

En el siguiente 
apítulo se utilizará el modelo MEC�MEF aquí formulado y validado para estudiar

entre otras 
osas el efe
to de la 
ondi
ión de 
onta
to entre el en
epado y la super�
ie del

terreno en el 
ál
ulo de fa
tores de intera

ión 
inemáti
a de grupos de pilotes. También se
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a
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presentarán resultados para mostrar el efe
to que produ
e la 
onsidera
ión del terreno 
omo

un semiespa
io vis
oelásti
o o poroelásti
o en la estima
ión de la respuesta de estru
turas de

edi�
a
ión, así 
omo la in�uen
ia de la intera

ión estru
tura�suelo�estru
tura.
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Estudio de la respuesta dinámi
a

de estru
turas de edi�
a
ión.

Resultados.

Capítulo6

6.1 Introdu

ión

En el 
apítulo anterior se expuso la formula
ión y valida
ión de un modelo MEC�MEF para el

estudio dinámi
o de estru
turas, prin
ipalmente de edi�
a
ión, 
imentadas en terrenos vis
oe-

lásti
os o poroelásti
os. Se trata ahora de utilizar di
ho modelo para estudiar la in�uen
ia de

fa
tores 
omo el ángulo de in
iden
ia de la ex
ita
ión, la naturaleza del terreno o la presen
ia

de estru
turas 
er
anas en la respuesta dinámi
a de este tipo de estru
turas en problemas don-

de existe intera

ión suelo�estru
tura o intera

ión estru
tura�suelo�estru
tura. Di
ho estudio

se hará apli
ando el modelo a la resolu
ión de diversos problemas que involu
ran al edi�
io

del apartado 5.5.3 del 
apítulo anterior, 
uyas 
ara
terísti
as se presentan de nuevo aquí para

mayor 
omodidad. Tal edi�
io tiene 100 metros de altura y se

ión transversal en U, 
uyas

dimensiones y geometría se muestran en la �gura 6.1. Se observa en la �gura que di
ho edi�
io

está 
imentado en el semiespa
io a través de una región 
on la misma se

ión transversal que

la superestru
tura, enterrada hasta una profundidad de 10 metros, y que se 
onsidera 
omo

in�nitamente rígida.

Las propiedades que permiten modelar la superestru
tura 
omo una viga Timoshenko son: el

módulo de rigidez transversal equivalente µ = 3.0 · 108
N/m

2
, la densidad lineal equivalente

ρ = 2.7 · 105
kg/m (
orrespondiente a la densidad espe
i�
a que se 
onsidera usualmente de

0.3t/m3
), el 
oe�
iente de Poisson ν = 0.2 y el 
oe�
iente de amortiguamiento ξ = 0.05. Con

estas propiedades, la fre
uen
ias naturales en base rígida para este edi�
io en los planos xz e

yz son respe
tivamente f xz
br = 0.564Hz (Txz

br = 1.773s) y f
yz
br = 0.920Hz (T

yz
br = 1.087s), valores

que siguen la línea de la expresión propuesta por Goel and Chopra [GC97℄ para 
al
ular el

periodo fundamental de edi�
ios de hormigón armado. La tabla 6.1 presenta las propiedades de

la se

ión transversal, siendo Ix, Iy los momentos de iner
ia, J el módulo de torsión, A el área,

ex, ey las ex
entri
idades y κ ′
x, κ ′

y los fa
tores de 
orre

ión de 
ortante.

Este 
apítulo se estru
tura de manera que en el apartado 6.2 se presenta un estudio de la

in�uen
ia, en la respuesta dinámi
a de la estru
tura ya de�nida, del ángulo de in
iden
ia θ0

de la ex
ita
ión, 
onsiderando ondas de tipo P, SH o SV. Después de observar la in�uen
ia
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Figura 6.1: Dimensiones del edi�
io y de la se

ión transversal en forma de U del mismo.

Tabla 6.1: Propiedades de la se

ión transversal del edi�
io para de�nir los elementos �nitos

Ix Iy J A ex ey κ ′
x κ ′

y(
N ·m2

) (
N ·m2

) (
N ·m4

) (
m2
)

(m) (m)

130000.0 40763.9 84281.6 900.0 2.37039 0.0 0.886399 0.748341

del ángulo de in
iden
ia para 
ada tipo de onda men
ionada, se estudia en el apartado 6.3

el fenómeno intera

ión estru
tura�suelo�estru
tura y su in�uen
ia en la respuesta. Para ello

se de�ne un sistema formado por dos estru
turas idénti
as a la de la �gura 6.1, separadas

una distan
ia d que toma diferentes valores, y 
onsiderando 
omo ex
ita
ión ondas P, SV o

SH 
on ángulo de in
iden
ia θ0. El modelo permite también modelar problemas que involu
ran

estru
turas 
imentadas en terrenos 
on naturaleza poroelásti
a, así en el apartado 6.4 se estudia

la respuesta del edi�
io 
imentado en un semiespa
io poroelásti
o por el 
ual se propagan

ondas de tipo P o S 
on in
iden
ia verti
al. En este 
aso se presentan resultados que permiten

determinar la varia
ión de la respuesta 
on del grado de satura
ión del terreno, para diferentes

valores del 
oe�
iente de disipa
ión b, y 
on la 
ondi
ión de 
onta
to entre la 
imenta
ión y el

terreno. Se muestran también resultados del sistema de dos edi�
ios 
er
anos 
imentados sobre

suelo poroelásti
o. Finalmente, en el apartado 6.5 se presentan resultados de la respuesta del

sistema formado por dos edi�
ios 
onsiderando 
omo ex
ita
ión ondas de Rayleigh, es de
ir,

ondas de super�
ie.

6.2 Intera

ión suelo estru
tura. In�uen
ia del ángulo de in-


iden
ia de la ex
ita
ión

En este apartado se estudia la in�uen
ia del ángulo de in
iden
ia θ0 de la ex
ita
ión (ver �-

gura 2.4). Se 
onsiderará para tal �n el edi�
io de la �gura 6.1 sometido a la a

ión de ondas

planas de tipo P, SV o SH, 
ontenidas en el plano yz e in
idiendo 
on un ángulo θ0 
on valores
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6.2 Intera

ión suelo estru
tura. In�uen
ia del ángulo de in
iden
ia de la ex
ita
ión

desde 15 a 90 grados en in
rementos de 15 grados. Las propiedades del semiespa
io vis
oelás-

ti
o en el que se en
uentra 
imentado el edi�
o vuelven a ser las mostradas en Todorovska y

Al Rjoub [TAR06a℄ para el terreno sin agua (se
o): velo
idad de propaga
ión de la onda trans-

versal cs = 300m/s, 
oe�
iente de Poisson ν = 0.3, densidad ρ = 1620kg/m
3
y 
oe�
iente de

amortiguamiento ξ = 0.05.

G

Point of reference

y, v

x, u

z, w

vff

wff

Malla EC de la 
imenta
ión rígida

Modelo EF del edi�
io

θ0

Onda in
idente

Figura 6.2: Malla de elementos de 
ontorno y elementos �nitos para el modelo MEC�MEF y

detalle del a
oplamiento edi�
io�
imenta
ión en el punto de referen
ia.

La malla de elementos de 
ontorno y elementos �nitos utilizada es la que se muestra en la �gu-

ra 6.2, siendo ésta la misma que la utilizada para el problema de valida
ión en el apartado 5.5.3.

Los resultados se presentan a través del módulo de las fun
iones en fre
uen
ia de las variables

representativas de la respuesta para 
ada tipo de onda en el rango entre 0 y 10 Hz.

6.2.1 Ondas P

En el 
aso de la in
iden
ia de un tren de ondas P 
ontenido en el plano yz, las variables

que de�nen la respuesta son prin
ipalmente el desplazamiento transversal v, el desplazamiento

verti
al w, y los giros de �exión θx y de torsión θz. Notar que siendo el valor del modulo de

Poisson del terreno ν = 0.3, no hay un valor del ángulo de in
iden
ia θ0 para el que se produz
a


ambio de modo de la onda P in
idente. En la �gura 6.3 se representa el módulo de las fun
iones

de respuesta en fre
uen
ia de estas variables, en la base y la parte alta del edi�
io (top),

normalizadas 
on el desplazamiento de 
ampo libre vff o wff, siendo a (20metros) el semian
ho

de la se

ión transversal (ver �gura 6.1). En algunas grá�
as de esta �gura se presentan detalles

de los pi
os de amplitud de estas fun
iones para las fre
uen
ias fundamentales. Se observa en

general para el rango de fre
uen
ias estudiado que 
ualquiera de las variables que se representan


re
e en amplitud 
on el ángulo de in
iden
ia. En parti
ular, la grá�
a en la que se representa

la fun
ión de respuesta del desplazamiento transversal en la parte alta del edi�
io |vtop/vff|,
muestra detalles de los pi
os que se produ
en a la primera y segunda fre
uen
ia fundamental.

La varia
ión 
on el ángulo de in
lina
ión del valor de di
ha fun
ión entre el mínimo y el máximo

es aproximadamente de un 10% para la primera fre
uen
ia y del orden del 5% para la segunda.

Por otro lado, para la fun
ión de respuesta del desplazamiento verti
al en la parte alta |wtop/wff|,
en torno a la fre
uen
ia fundamental, la varia
ión entre el mínimo y el máximo valor de la fun
ión

es aproximadamente del 7%. En esta �gura, para un ángulo de in
iden
ia θ0 = 90◦ (línea negra),
se muestran sólo resultados para el desplazamiento verti
al w, ya que para este este valor del

ángulo de in
iden
ia el desplazamiento transversal de 
ampo libre vff es nulo y no tiene sentido

normalizar el desplazamiento transversal v, el giro de �exión θx y la rota
ión torsional θz, que

son también nulos.
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Figura 6.3: Fun
iones de respuesta en fre
uen
ia del desplazamiento transversal |v/vff|, del
desplazamiento verti
al |w/wff|, del giro de �exión a · |θx/vff| y de la rota
ión torsional a · |θz/vff|
en la base y la parte alta (top) del edi�
io, debidos a la a

ión de ondas P 
on diferentes valores

del ángulo de in
iden
ia θ0.

Hay que men
ionar que debido a la no simetría de la se

ión transversal en forma U, también

se produ
en desplazamientos horizontales u en dire

ión del eje x perpendi
ular al plano de

propaga
ión y giros de �exión θy alrededor del eje y, ambos 
on un orden de magnitud bastante

inferior a las variables ya presentadas en la �gura 6.3. En la �gura 6.4 se presentan las fun
iones

de respuesta en fre
uen
ia del desplazamiento u y el giro de �exión θy, pudiendo observarse que

138



6.2 Intera

ión suelo estru
tura. In�uen
ia del ángulo de in
iden
ia de la ex
ita
ión

no son nulas y que varían 
on el ángulo de in
iden
ia. En las grá�
as de esta �gura el valor de

las variables representadas 
re
e 
on el ángulo de in
iden
ia, es de
ir, a medida que la onda se

vuelve más verti
al. Por tanto, la 
omponente verti
al del 
ampo de desplazamientos de la onda

P, que también aumenta 
on el ángulo θ0, está rela
ionada dire
tamente 
on el 
re
imiento del

desplazamiento transversal u y del giro θy. Los resultados 
orrespondientes al ángulo θ0 = 90◦

no se muestran debido a que para este valor, el desplazamiento transversal de 
ampo libre vff es

nulo y no tiene sentido representarlos 
on las reglas de normaliza
ión adoptadas, sin embargo

por la tenden
ia mostrada se intuye que los valores de estas variables tendrían un valor aún

mayor que los mostrados en las grá�
as. Para estas variables se vuelve a mostrar que el valor

de las fun
iones de respuesta 
re
e 
on el valor ángulo θ0.
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Figura 6.4: Fun
iones de respuesta en fre
uen
ia del desplazamiento transversal |u/vff| y del

giro de �exión a · |θy/vff| en la base y la parte alta (top) del edi�
io, debidos a la a

ión de

ondas P 
on diferentes valores del ángulo de in
iden
ia θ0.

6.2.2 Ondas SV

Las variables representativas de la respuesta 
onsiderando 
omo ex
ita
ión una onda SV 
on-

tenida en el plano yz y 
on ángulo de in
iden
ia θ0 son el desplazamiento transversal v, el

verti
al w y los giros de �exión θx y de rota
ión θz. Éstas se normalizan 
on el desplazamiento

horizontal vff y verti
al wff de 
ampo libre. Para este tipo de onda in
idente, 
uando el ángulo

de in
iden
ia θ0 = 45◦, la amplitud de la onda P re�ejada A
(2)
P se anula, lo que provo
a que se

re�eje una úni
a onda SV de igual amplitud que la in
idente A
(0)
SV = A

(1)
SV (ver expresiones en la

tabla 2.6). La 
ontribu
ión al 
ampo de desplazamientos de la onda SV in
idente y re�ejada se


ontrarresta para la 
omponente horizontal en super�
ie libre (x3 = 0), y en 
onse
uen
ia ésta

(u2 en la tabla 2.3) toma valor nulo. Es éste el motivo por el que no se presentan para este tipo

de onda resultados para este valor del ángulo de in
iden
ia ya que el desplazamiento horizontal

de 
ampo libre nulo no está en 
on
ordan
ia 
on las reglas de normaliza
ión de los resultados.

El ángulo 
ríti
o para el suelo 
onsiderado, 
on un valor del módulo de Poisson ν = 0.3, es de
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57.69◦. Como en el 
aso de la in
iden
ia de ondas P, para este valor de ν no existe un valor de

θ0 para el que se produ
e 
ambio de modo de la onda SV.

En la �gura 6.5 se representa el módulo de las fun
iones en fre
uen
ia de las variables repre-

sentativas de la respuesta. En general, se observa que si el ángulo de in
iden
ia θ0 es inferior

al 
ríti
o las fun
iones de respuesta, tanto en la base 
omo en la parte alta, muestran valores

notablemente diferentes 
on respe
to a los resultados que se obtienen para ángulos θ0 mayores

al 
ríti
o, aunque este he
ho no es tan evidente para el 
omportamiento verti
al. Las fun
iones

de respuesta del desplazamiento verti
al |w/wff| 
re
en en valor 
on el ángulo θ0, aunque para

para el 
aso de in
iden
ia 
ompletamente verti
al (θ0 = 90◦) no tiene sentido mostrar di
has

fun
iones de respuesta 
on las reglas de normaliza
ión mostradas ya que la 
omponente verti
al

del 
ampo in
idente wff se anula. Las fun
iones del desplazamiento horizontal |v/vff| tanto en

la base 
omo en la parte alta (top) presentan, en torno a la primera fre
uen
ia fundamental,

un valor notablemente mayor 
uando el ángulo θ0 es inferior al 
ríti
o. La diferen
ia entre los

máximos de las fun
iones para valores de θ0 por debajo y por en
ima del ángulo 
ríti
o a esta

fre
uen
ia es aproximadamente de 30% en la base y alrededor del 70% en la parte alta. A

partir de la primera fre
uen
ia se observa que en la base del edi�
io la respuesta en términos

del desplazamiento horizontal v es menor si el ángulo de in
iden
ia es menor al 
ríti
o, mientras

que, en esas mismas 
ondi
iones, en la parte alta de la estru
tura el valor de la respuesta es

mayor en todo el rango de fre
uen
ias mostrado. Las fun
iones de respuesta en términos del

giro de �exión θx y de torsión θz también muestran valores de respuesta mayores en todo el

rango de fre
uen
ias 
uando el ángulo de in
iden
ia es inferior al 
ríti
o. Los valores de las

diferen
ias en torno a la primera fre
uen
ia natural están entre el 60 y el 70%.

Como o
urría en el 
aso de la in
iden
ia de ondas P, por la forma en U de la se

ión, también

se produ
en para ondas SV desplazamientos horizontales u y giros de �exión θy. En la �gura 6.6

se representan las fun
iones de respuesta en fre
uen
ia para estas dos variables en la base y la

parte alta (top) de la estru
tura. Se puede ver aquí también la notable diferen
ia en la respuesta


uando el valor del ángulo de in
iden
ia es menor o mayor que el ángulo 
ríti
o. También, 
omo

o
urría para el 
aso de las ondas P, el valor de las fun
iones de estas variables está rela
ionado


on la 
omponente verti
al del 
ampo in
idente. De esta forma para valores de θ0 inferiores

al 
ríti
o, el desplazamiento verti
al del 
ampo de desplazamientos de la ex
ita
ión aumenta


on el ángulo, y en 
onse
uen
ia también son mayores los valores de las fun
iones de respuesta

representadas. Por 
ontra, para valores de θ0 superiores al 
ríti
o, la 
omponente verti
al del


ampo de desplazamientos de las ondas de
re
e a medida que aumenta θ0 y por tanto también

lo ha
e la respuesta en términos de las variables representadas. En el 
aso de θ0 = 90◦ el valor

del desplazamiento verti
al que produ
e el 
ampo in
idente es 
ero siendo ambas variables u y

θy también nulas.

6.2.3 Ondas SH

Considerando 
omo ex
ita
ión la in
iden
ia de ondas SH 
uya dire

ión de propaga
ión está


ontenida en el plano yz, se produ
en sobre el sistema desplazamientos transversales u fuera de

di
ho plano y giros de �exión θy. Para 
ualquier ángulo de in
iden
ia no verti
al la ex
ita
ión


ontiene parte simétri
a y parte antisimétri
a (respe
to al plano xz). La respuesta de la es-

tru
tura por tanto puede in
luir desplazamientos simétri
os 
omo es el desplazamiento verti
al

w. En la �gura 6.7 se muestran las fun
iones de respuesta en fre
uen
ia de estas variables

normalizadas 
on el desplazamiento de 
ampo libre uff. Los resultados representados en esta

�gura muestran que para bajas fre
uen
ias, in
luyendo la primera fre
uen
ia natural hasta 
asi

la segunda, la varia
ión de la respuesta 
on el ángulo de in
iden
ia es insigni�
ante. Por 
ontra,

a partir de la segunda fre
uen
ia natural, la 
ual tiene un valor en torno a 2.65 Hz, se apre
ia
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Figura 6.5: Fun
iones de respuesta en fre
uen
ia del desplazamiento transversal |v/vff|, del
desplazamiento verti
al |w/wff|, del giro de �exión a · |θx/vff| y de la rota
ión torsional a · |θz/vff|
en la base y la parte alta (top) del edi�
io, debidos a la a

ión de ondas SV 
on diferentes

valores del ángulo de in
iden
ia θ0.

varia
ión en el valor de la respuesta 
on el ángulo θ0. El detalle en la grá�
a del desplazamiento

transversal en la parte alta |utop/uff| (arriba dere
ha) muestra, para la primera fre
uen
ia fun-

damental, que la varia
ión del valor absoluto es aproximadamente del 2% entre el mínimo (para

θ0 = 15◦) y el máximo (para θ0 = 90◦), apre
iándose además que el valor de la fun
ión aumenta

a medida que 
re
e θ0. Para esta misma fun
ión, la varia
ión en torno a la segunda fre
uen
ia
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Figura 6.6: Fun
iones de respuesta en fre
uen
ia del desplazamiento transversal |u/vff| y del

giro de �exión a · |θx/vff| en la base y la parte alta (top) del edi�
io, debidos a la a

ión de

ondas SV 
on diferentes valores del ángulo de in
iden
ia θ0.

fundamental es notablemente mayor, aproximadamente del 30% entre el valor mínimo (para

θ0 = 15◦) y el máximo (para θ0 = 90◦). Para las fun
iones de respuesta del giro de �exión θy

y del desplazamiento verti
al w la varia
ión sigue la misma tenden
ia, 
on varia
iones insigni-

�
antes de la respuesta hasta fre
uen
ias algo mayores a la primera fre
uen
ia fundamental y


ambios notablemente más visibles a partir de la segunda fre
uen
ia fundamental. Es 
laro por

tanto que para este tipo de ondas transversales, la respuesta del sistema también aumenta 
on

la magnitud del ángulo de in
iden
ia.

En general se observa que para 
ualquier tipo de onda 
onsiderada (P, SV o SH) existe varia
ión,


on el ángulo de in
iden
ia θ0, en la respuesta verti
al, transversal, de �exión y de torsión de

la estru
tura. Di
has varia
iones se han eviden
iado en los valores de las fun
iones en torno a

la primera y segunda fre
uen
ia fundamental y puede ha
erse extensivo a prá
ti
amente todo

el rango de fre
uen
ias estudiado.
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Figura 6.7: Fun
iones de respuesta en fre
uen
ia del desplazamiento transversal |u/uff|, del
giro de �exión a · |θy/uff| y del desplazamiento verti
al |w/wff| en la base y la parte alta (top)

del edi�
io, debidos a la a

ión de ondas SH 
on diferentes valores del ángulo de in
iden
ia θ0.
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6.3 Intera

ión estru
tura�suelo�estru
tura.

Una vez estudiada la respuesta de un edi�
io para diferentes tipos de onda y la in�uen
ia

en aquella del ángulo de in
iden
ia, el siguiente paso es estudiar la respuesta del un sistema


ompuesto por dos edi�
ios 
omo el de la �gura 6.1, idénti
os entre sí y que se en
uentran

relativamente 
er
a el uno del otro, separados una distan
ia d (25 y 50 metros). En la �gu-

ra 6.8 se muestra el esquema 
on la disposi
ión de las 
imenta
iones y las 
orrespondientes

superestru
turas modeladas 
on elementos �nitos de dos nodos.

θ0

Figura 6.8: Esquema de la vista isométri
a del sistema 
ompuesto por de dos edi�
ios, separados

una distan
ia d, sobre el que a
túa un 
ampo de ondas (P, SV o SH) 
ontenido en el plano yz


on un ángulo de in
iden
ia θ0.

El terreno que aloja la 
imenta
ión de ambas estru
turas se 
onsidera 
omo un semiespa
io

vis
oelásti
o 
on las mismas propiedades que para el 
aso de un sólo edi�
io. Nuevamente,

se 
onsidera 
omo ex
ita
ión la a

ión de ondas P, SV y SH 
ontenidas en el plano yz y que

in
iden 
on un ángulo genéri
o θ0.

En la �gura 6.9 se muestra la malla MEC�MEF 
uando la distan
ia entre los edi�
ios es

d = 25 metros. La malla para el 
aso en el que la distan
ia d = 50 metros es muy similar siendo

ésta última algo más grande por la mayor distan
ia entre edi�
ios.

El interés de este estudio radi
a en ver 
ómo in�uye en la respuesta de la estru
tura la presen
ia

de otra 
er
ana 
on respe
to a la respuesta de un edi�
io aislado. Es por ello que los resultados

obtenidos para di
ho sistema de dos edi�
ios se 
omparan 
on los mostrados en el apartado

anterior para un úni
o edi�
io. Para el sistema formado por ambos edi�
ios y 
on el tipo de

ex
ita
ión 
onsiderada, la respuesta de ambas estru
turas es idénti
a en módulo, sin embargo

se verá que las fun
iones de respuesta de éstos presentan valores diferentes 
on respe
to a

los obtenidos para un sólo edi�
io aislado. Los valores del ángulo de in
iden
ia es
ogidos son

úni
amente 30, 60, 75 y 90 grados.
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y, v

x, u

z, w

Figura 6.9: Malla MEC�MEF para modelar el sistema 
ompuesto por dos edi�
ios separados

una distan
ia d = 25 metros (sólo se malla la mitad de la geometría).

6.3.1 Ondas P

Considerando la a

ión de ondas P 
on ángulo de in
iden
ia θ0, en las �guras 6.10, 6.11, 6.12

y 6.13 se muestra la respuesta del sistema formado por dos edi�
ios frente a la respuesta de un

sólo edi�
io aislado 
uando θ0 toma los valores 30, 60, 75 y 90 grados respe
tivamente. Por

la naturaleza de la ex
ita
ión se representan en la base y parte alta del edi�
io las fun
iones

del desplazamiento transversal |v/vff|, del desplazamiento verti
al |w/wff|, del giro de �exión

a · |θx/vff| y la rota
ión torsional a · |θz/vff|. Para el valor θ0 = 90◦ se presentan sólo las fun
iones

del desplazamiento verti
al |w/wff| por tratarse de una onda P 
ompletamente verti
al, siendo

el resto de variables men
ionadas nulas para este 
aso parti
ular. En las �guras se observan

algunas diferen
ias entre la respuesta del sistema 
ompuesto por dos edi�
ios 
on respe
to a

la del formado por un sólo edi�
io. Las grá�
as que muestran las variables de la respuesta

en la parte alta del edi�
io in
luyen detalles de los valores que toman las fun
iones para las

fre
uen
ias fundamentales. Para el desplazamiento transversal v en la parte alta a la primera

fre
uen
ia fundamental, independientemente del ángulo, el valor de la respuesta del sistema


on un sólo edi�
io es aproximadamente un 9% mayor que la del sistema de dos edi�
ios,

siendo po
o importante la in�uen
ia de la distan
ia d a esta fre
uen
ia. En el detalle en torno

a la segunda fre
uen
ia fundamental, se puede ver que la diferen
ia de respuesta de un sólo

edi�
io 
on respe
to a la de dos edi�
ios separados 25 metros es muy pequeña, algo menor

del 1%, mientras que para una distan
ia entre estru
turas de 50 metros las diferen
ias son del

orden de 8%. Se observan también muy pequeñas modi�
a
iones en el valor de las fre
uen
ias

fundamentales del edi�
io por la presen
ia de otro 
er
ano. En la grá�
a del desplazamiento

verti
al en la parte alta las diferen
ias son más evidentes y se observan diferen
ias también por

la varia
ión de la distan
ia d, siendo la respuesta verti
al entre el 17% y el 20% mayor 
uando

la distan
ia entre edi�
ios es de 25 metros, y entre el 7% y el 12% si la separa
ión es 50 metros,


on respe
to a la respuesta de un úni
o edi�
io. Para el 
omportamiento verti
al las varia
iones

del valor de la fre
uen
ia fundamental, aunque son pequeñas, son algo más notables.

Es interesante observar también 
omo se modi�
an las fun
iones la respuesta en términos

del desplazamiento transversal u en la dire

ión del eje x y del giro del giro de �exión θy. Las

�guras 6.14, 6.15, 6.16 muestran, respe
tivamente para valores 30, 60 y 75 grados del ángulo de

in
iden
ia θ0, las fun
iones de respuesta de estas variables en la base y la parte alta del edi�
io.

Para el 
aso en que el ángulo de in
iden
ia es igual a 90 grados las fun
iones de respuesta de

estas variables no se anulan, pero la normaliza
ión no es apli
able ya que, para di
ho valor de

θ0, se anula vff, motivo por el 
ual no se presentan. Las fun
iones de estas variables muestran un

aumento 
onsiderable, tanto en la base 
omo en la parte alta, de la respuesta por la presen
ia de
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otra estru
tura 
er
ana. Además, di
ho aumento varía 
on la distan
ia entre ambas estru
turas,

siendo mayor la respuesta para el menor valor de la separa
ión (25 metros).
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Figura 6.10: Comparativa de la respuesta del sistema formado por dos edi�
ios 
er
anos sepa-

rados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado. Fun
iones de respuesta

en fre
uen
ia del desplazamiento transversal |v/vff|, del desplazamiento verti
al |w/wff|, del giro
de �exión a · |θx/vff| y de la rota
ión torsional a · |θz/vff| en la base y la parte alta (top) del

edi�
io, debidos a la a

ión de ondas P 
on ángulo de in
iden
ia θ0 = 30◦.
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Figura 6.11: Comparativa de la respuesta del sistema formado por dos edi�
ios 
er
anos sepa-

rados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado. Fun
iones de respuesta

en fre
uen
ia del desplazamiento transversal |v/vff|, del desplazamiento verti
al |w/wff|, del giro
de �exión a · |θx/vff| y de la rota
ión torsional a · |θz/vff| en la base y la parte alta (top) del

edi�
io, debidos a la a

ión de ondas P 
on ángulo de in
iden
ia θ0 = 60◦.
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Figura 6.12: Comparativa de la respuesta del sistema formado por dos edi�
ios 
er
anos sepa-

rados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado. Fun
iones de respuesta

en fre
uen
ia del desplazamiento transversal |v/vff|, del desplazamiento verti
al |w/wff|, del giro
de �exión a · |θx/vff| y de la rota
ión torsional a · |θz/vff| en la base y la parte alta (top) del

edi�
io, debidos a la a

ión de ondas P 
on ángulo de in
iden
ia θ0 = 75◦.
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Figura 6.13: Comparativa de la respuesta del sistema formado por dos edi�
ios 
er
anos sepa-

rados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado. Fun
iones de respuesta

en fre
uen
ia del desplazamiento verti
al |w/wff| en la base y la parte alta (top) del edi�
io,

debidos a la a

ión de ondas P 
on ángulo de in
iden
ia θ0 = 90◦.
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Figura 6.14: Comparativa de la respuesta del sistema formado por dos edi�
ios 
er
anos sepa-

rados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado. Fun
iones de respuesta

en fre
uen
ia del desplazamiento transversal |u/vff| y del giro de �exión a · |θy/vff| en la base y la
parte alta (top) del edi�
io, debidos a la a

ión de ondas P 
on ángulo de in
iden
ia θ0 = 30◦.
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Figura 6.15: Comparativa de la respuesta del sistema formado por dos edi�
ios 
er
anos sepa-

rados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado. Fun
iones de respuesta

en fre
uen
ia del desplazamiento transversal |u/vff| y del giro de �exión a · |θx/vff| en la base y la
parte alta (top) del edi�
io, debidos a la a

ión de ondas P 
on ángulo de in
iden
ia θ0 = 60◦.
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Figura 6.16: Comparativa de la respuesta del sistema formado por dos edi�
ios 
er
anos sepa-

rados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado. Fun
iones de respuesta

en fre
uen
ia del desplazamiento transversal |v/vff| y del giro de �exión a · |θx/vff| en la base y la

parte alta (top) del edi�
io, debidos a la a

ión de ondas P 
on ángulo de in
iden
ia θ0 = 75◦.
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6.3.2 Ondas SV

Se 
onsidera ahora la a

ión, sobre el sistema de dos edi�
ios separados una distan
ia d (ver

�gura 6.8), de un tren de ondas SV 
uya dire

ión de propaga
ión está 
ontenida en el plano yz,


on ángulo de in
iden
ia θ0, el 
ual toma los valores de 30, 60, 75 y 90 grados. En las �guras

6.17, 6.18, 6.19 y 6.20 se muestran las fun
iones de respuesta de di
ho sistema junto 
on las de

un sólo edi�
io aislado para los valores del ángulo de in
iden
ia men
ionados. Di
has fun
iones

se representan, normalizadas 
on los desplazamientos de 
ampo libre horizontal vff y verti
al

wff, en términos del desplazamiento horizontal |v/vff|, del desplazamiento verti
al |w/wff|, del
giro de �exión a · |θx/vff| y del giro de torsión a · |θz/vff|, tanto en la base 
omo en la parte alta

de la estru
tura. En la �gura 6.20 no se muestran las fun
iones de respuesta del desplazamiento

verti
al, ya que el desplazamiento verti
al que produ
e el 
ampo in
idente wff se anula y no

es posible su normaliza
ión. Las grá�
as de estas �guras muestran que, también 
on ondas

SV, existe in�uen
ia en la respuesta del sistema por la presen
ia de otra estru
tura 
er
ana.

Las mayores diferen
ias entre la respuesta del sistema de dos edi�
ios 
on respe
to a la del


onstituido por una úni
a estru
tura se observan en las fun
iones del desplazamiento verti
al

en la parte alta |wtop/wff|. En torno a la fre
uen
ia fundamental, el valor de la respuesta del

sistema 
re
e, según el ángulo de in
iden
ia, entre el 20% y el 25% si la distan
ia d=25 metros,

y entre el 12% y el 14% si d=50 metros. Para el 
omportamiento a �exión de las estru
turas,

es de
ir, para las fun
iones de respuesta del desplazamiento transversal v y el giro de �exión θx,

las diferen
ias entre los valores de las fun
iones en torno a la primera fre
uen
ia fundamental

son aproximadamente un 9% menores para el 
aso de dos edi�
ios, siendo la varia
ión 
on la

distan
ia d insigni�
ante. Los valores de estas mismas fun
iones en torno a la segunda fre
uen
ia

fundamental muestran valores aproximadamente 4% mayores si d=25 metros y un 8% mayores

si d=50 metros, 
on respe
to a los de la respuesta de un sólo edi�
io. Se observan también muy

pequeñas modi�
a
iones del valor de las fre
uen
ias fundamentales del edi�
io por la presen
ia

de otro 
er
ano.

Vuelve a ser interesante estudiar 
omo se modi�
a la respuesta en términos del desplazamiento

transversal u y el giro de �exión θy. En las �guras 6.21, 6.22, 6.23 se muestran, respe
tivamente

para los valores de θ0 men
ionados (30, 60, 75 grados), las fun
iones de respuesta de estas

dos variables en la base y la parte alta de la estru
tura. Es evidente observando estas fun
iones

que el valor de la respuesta aumenta 
onsiderablemente 
uando existe otra estru
tura 
er
ana.

Di
ho aumento es mayor para la distan
ia entre edi�
ios de 25 metros y de
re
e 
uando la esta

distan
ia aumenta a 50 metros. En parti
ular, para el valor del ángulo de in
iden
ia θ0 = 90◦

(no hay re�exión en onda P) no se presentan di
has fun
iones ya que el valor de éstas se anula,

lo 
ual vuelve a 
on�rmar que la respuesta de la estru
tura en términos de estas variables está

rela
ionada 
on la 
omponente verti
al del 
ampo in
idente para este tipo de onda.

154



6.3 Intera

ión estru
tura�suelo�estru
tura.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

|v
b
as

e/
v f

f|

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

|v
to

p
/v

ff
|

1 building, θ0=30º

2 buildings, d=25 m,θ0=30º

2 buildings, d=50 m,θ0=30º

 0

 0.2

 0.4

 0.6

 0.8

 1

|w
b
as

e/
w

ff
|

 0

 0.5

 1

 1.5

 2

|w
to

p
/w

ff
|

 0

 0.5

 1

 1.5

 2

a·
|(

θ x
) b

as
e/

v f
f|

 0

 2

 4

 6

 8

a·
|(

θ x
) t

o
p
/v

ff
|

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  2  4  6  8  10

a·
|(

θ z
) b

as
e/

v f
f|

Frequency (Hz)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  2  4  6  8  10

a·
|(

θ z
) t

o
p
/v

ff
|

Frequency (Hz)

 4

 5

 6

 3  3.25  3.5  3.75

 36

 38

 40

 42

 0.7  0.75  0.8  0.85

 1.75

 2

 2.25

 2.5  3  3.5  4  4.5

 8

 8.5

 9

 9.5

 0.7  0.8  0.9

 3.5

 4

 4.5

 3  3.5  4

Figura 6.17: Comparativa de la respuesta del sistema formado por dos edi�
ios 
er
anos sepa-

rados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado. Fun
iones de respuesta

en fre
uen
ia del desplazamiento transversal |v/vff|, del desplazamiento verti
al |w/wff|, del giro
de �exión a · |θx/vff| y de la rota
ión torsional a · |θz/vff| en la base y la parte alta (top) del

edi�
io, debidos a la a

ión de ondas SV 
on ángulo de in
iden
ia θ0 = 30◦.
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Figura 6.18: Comparativa de la respuesta del sistema formado por dos edi�
ios 
er
anos sepa-

rados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado. Fun
iones de respuesta

en fre
uen
ia del desplazamiento transversal |v/vff|, del desplazamiento verti
al |w/wff|, del giro
de �exión a · |θx/vff| y de la rota
ión torsional a · |θz/vff| en la base y la parte alta (top) del

edi�
io, debidos a la a

ión de ondas SV 
on ángulo de in
iden
ia θ0 = 60◦.
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Figura 6.19: Comparativa de la respuesta del sistema formado por dos edi�
ios 
er
anos sepa-

rados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado. Fun
iones de respuesta

en fre
uen
ia del desplazamiento transversal |v/vff|, del desplazamiento verti
al |w/wff|, del giro
de �exión a · |θx/vff| y de la rota
ión torsional a · |θz/vff| en la base y la parte alta (top) del

edi�
io, debidos a la a

ión de ondas SV 
on ángulo de in
iden
ia θ0 = 75◦.
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Figura 6.20: Comparativa de la respuesta del sistema por formado por dos edi�
ios 
er
anos

separados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado. Fun
iones de

respuesta en fre
uen
ia del desplazamiento verti
al |w/wff| en la base y la parte alta (top) del

edi�
io, debidos a la a

ión de ondas SV 
on ángulo de in
iden
ia θ0 = 90◦.
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Figura 6.21: Comparativa de la respuesta del sistema formado por dos edi�
ios 
er
anos sepa-

rados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado. Fun
iones de respuesta

en fre
uen
ia del desplazamiento transversal |u/vff| y del giro de �exión a · |θy/vff| en la base

y la parte alta (top) del edi�
io, debidos a la a

ión de ondas SV 
on ángulo de in
iden
ia

θ0 = 30◦.
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Figura 6.22: Comparativa de la respuesta del sistema formado por dos edi�
ios 
er
anos sepa-

rados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado. Fun
iones de respuesta

en fre
uen
ia del desplazamiento transversal |u/vff| y del giro de �exión a · |θx/vff| en la base

y la parte alta (top) del edi�
io, debidos a la a

ión de ondas SV 
on ángulo de in
iden
ia

θ0 = 60◦.
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Figura 6.23: Comparativa de la respuesta del sistema formado por dos edi�
ios 
er
anos sepa-

rados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado. Fun
iones de respuesta

en fre
uen
ia del desplazamiento transversal |u/vff| y del giro de �exión a · |θx/vff| en la base

y la parte alta (top) del edi�
io, debidos a la a

ión de ondas SV 
on ángulo de in
iden
ia

θ0 = 75◦.
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6.3.3 Ondas SH

Consideramos también un tren de ondas SH 
uya dire

ión de propaga
ión está 
ontenida en

el plano yz, a
tuando 
omo ex
ita
ión del sistema de dos edi�
ios, 
on un ángulo de in
iden
ia

θ0.

En las �guras 6.24, 6.25, 6.26, 6.27 se muestran las fun
iones de respuesta en fre
uen
ia del

desplazamiento transversal |u/uff|, del giro de �exión a · |θy/uff| y del desplazamiento verti
al

|w/uff| en la base y la parte alta de la estru
tura. En todas las �guras se presentan detalles en

las grá�
as de las fun
iones de respuesta del desplazamiento transversal y el giro de �exión en la

parte alta. En términos de estas dos variables, las diferen
ias en el valor la respuesta del sistema

de dos edi�
ios 
on respe
to a la del 
onstituido por uno sólo se mantienen independientemente

del ángulo de in
iden
ia, son muy pequeñas en torno a la primera fre
uen
ia fundamental, algo

mayores alrededor de la segunda y muestran po
a varia
ión 
on la distan
ia d. Cuantitativamente

estas diferen
ias toman un valor de aproximadamente 2% en torno a la primera fre
uen
ia

fundamental y de un 9% alrededor de la segunda. El efe
to de intera

ión por la presen
ia de

otra estru
tura 
er
ana si se ha
e notar en las fun
iones de respuesta del desplazamiento verti
al

w. Se observa un aumento notable del valor de la respuesta en todo el rango de fre
uen
ias

estudiado, siendo di
has diferen
ias máximas en torno a las fre
uen
ias fundamentales. Para

el 
omportamiento verti
al del sistema la distan
ia d si tiene in�uen
ia, siendo el valor de la

respuesta mayor 
uanto más 
er
anas se en
uentran ambas estru
turas entre sí.
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Figura 6.24: Comparativa de la respuesta del sistema formado por dos edi�
ios 
er
anos sepa-

rados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado. Fun
iones de respuesta

en fre
uen
ia del desplazamiento transversal |u/uff|, del giro de �exión a · |θy/uff| y del despla-

zamiento verti
al |w/uff| en la base y la parte alta (top) del edi�
io, debidos a la a

ión de

ondas SH 
on ángulo de in
iden
ia θ0 = 30◦.
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Figura 6.25: Comparativa de la respuesta del sistema formado por dos edi�
ios 
er
anos sepa-

rados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado. Fun
iones de respuesta

en fre
uen
ia del desplazamiento transversal |u/uff|, del giro de �exión a · |θx/uff| y del despla-

zamiento verti
al |w/uff| en la base y la parte alta (top) del edi�
io, debidos a la a

ión de

ondas SH 
on ángulo de in
iden
ia θ0 = 60◦.
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Figura 6.26: Comparativa de la respuesta del sistema formado por dos edi�
ios 
er
anos sepa-

rados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado. Fun
iones de respuesta

en fre
uen
ia del desplazamiento transversal |u/uff|, del giro de �exión a · |θx/uff| y del despla-

zamiento verti
al |w/uff| en la base y la parte alta (top) del edi�
io, debidos a la a

ión de

ondas SH 
on ángulo de in
iden
ia θ0 = 75◦.
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Figura 6.27: Comparativa de la respuesta del sistema formado por dos edi�
ios 
er
anos sepa-

rados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado. Fun
iones de respuesta

en fre
uen
ia del desplazamiento transversal |u/uff|, del giro de �exión a · |θx/uff| y del despla-

zamiento verti
al |w/uff| en la base y la parte alta (top) del edi�
io, debidos a la a

ión de

ondas SH 
on ángulo de in
iden
ia θ0 = 90◦.
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6.4 In�uen
ia de la naturaleza poroelásti
a del terreno

El objetivo de este apartado es estudiar la in�uen
ia de 
onsiderar el terreno 
omo poroelásti
o.

Tomaremos 
omo referen
ia para ello el problema que se ha utilizado hasta ahora, por lo que

se volverá a estudiar la respuesta del edi�
io mostrado en la �gura 6.1, pero 
onsiderando

ahora el terreno 
omo porelásti
o. Se 
ompararán los resultados 
on los obtenidos 
uando se


onsidera di
ho edi�
io 
imentado en un semiespa
io vis
oelásti
o. Se estudiará también al �nal

del apartado la in�uen
ia de la 
ondi
ión de 
onta
to, permeable (drenado) o impermeable (no

drenado), entre la 
imenta
ión y el terreno. La 
orrespondiente respuesta del edi�
io en base

rígida se representa en las grá�
as 
omo referen
ia para observar el efe
to en la misma de la

intera

ión suelo�estru
tura.

Las propiedades del semiespa
io en el que se en
uentra 
imentado el edi�
o son de nuevo

las mostradas en Todorovska y Al Rjoub [TAR06a℄. Para de�nir el semiespa
io 
omo vis-


oelásti
o se usan las propiedades 
orrespondientes al 
aso del terreno sin agua (se
o) que

son: velo
idad de propaga
ión de la onda transversal cs = 300m/s, 
oe�
iente de Poisson

ν = 0.3, densidad ρ = 1620kg/m
3
y 
oe�
iente de amortiguamiento ξ = 0.05. Consideran-

do el semiespa
io 
omo poroelásti
o las propiedades son: porosidad φ = 0.4, 
oe�
iente de

Poisson ν = 0.3, densidad de la fase sólida ρs = 2700kg/m
3
, módulo de rigidez transversal

de la fase sólida µs (
orrespondiente a una velo
idad de propaga
ión de onda en terreno se
o

cs, dry =
√

µs/((1−φ)ρs) = 300m/s), densidad de la fase �uida ρf = 1000kg/m
3
, módulo de


ompresibilidad de la fase �uida Kf = 2.2 · 109
N/m

2
y densidad añadida ρa = 300kg/m

3
. Las


onstantes de Biot son Q = (1−φ)Kf = 8.80 ·108
N/m

2
y R = φ Kf = 1.32 ·109

N/m

2
.

Con las propiedades expuestas, en este estudio se 
onsiderarán suelos 
on diferentes propiedades

para un total de 
in
o 
asos. En dos de ellos el suelo se modela 
omo vis
oelásti
o 
on la

diferen
ia de que uno de ellos está 
ompletamente drenado (suelo se
o) y otro no drenado (suelo

saturado). En este último 
aso, las propiedades del suelo son: módulo de rigidez transversal

µus = 1.458 ·108
N/m

2
, densidad ρus = 2020kg/m

3
, 
oe�
iente de amortiguamiento ξ = 0.05 y

módulo de Poisson νus = 0.4876, el 
ual está rela
ionado 
on las 
onstantes de Biot 
omo

νus =
λs +µs +

(Q+R)2

R

2
[
λs +µs +

(Q+R)2

R

]
(6.1)

donde λs es la 
onstante de Lamé.

En los otros tres 
asos el suelo es modelado 
omo poroelásti
o y 
ada uno está 
ara
terizado

por el valor de la 
onstante de disipa
ión b. Se usarán por tanto tres valores de este paráme-

tro b = 0, 1.569 · 105
y1.569 · 106

N/m

2
, 
orrespondientes respe
tivamente a la 
ondu
tividad

hidráuli
a de Dar
y k = ∞, 10−2
y10−3

m/s de a
uerdo 
on la expresión (2.13). A
larar que la


ondu
tividad hidráuli
a usada por Todorovska y Al Rjoub [TAR06a℄ debe ser k = ∞(b = 0)
basado en los valores de las velo
idades de onda in
luidos. En prin
ipio la 
ondi
ión de 
onta
-

to entre la 
imenta
ión rígida y el suelo se asume 
omo impermeable (
onta
to no drenado).

Posteriormente se estudia también la in�uen
ia de la 
ondi
ión de 
onta
to para valores de

b = 0.

La malla MEC�MEF utilizada en todos los 
asos expuestos en este apartado es la misma que

la mostrada en la �gura 6.2, pero 
onsiderando 
omo ex
ita
ión úni
amente ondas P o S 
on

in
iden
ia verti
al (θ0 = 90◦).

La �gura 6.28 muestra las fun
iones de respuesta en fre
uen
ia |w/wff|, |u/wff| y a · |θy/wff|,
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Figura 6.28: Fun
iones de respuesta en fre
uen
ia del desplazamiento verti
al |w/w
�

|, del
desplazamiento horizontal |u/w

�

| y del giro de �exión a · |θy/w
�

| en la base y la parte alta (top)

del edi�
io, 
imentado en un semiespa
io poroelásti
o, debidos a la a

ión de ondas P 
on

in
iden
ia verti
al. Modelo vis
oelásti
o (drenado y no drenado) y modelo poroelásti
o para

diferentes valores de la 
onstante de disipa
ión b.

que representan respe
tivamente el desplazamiento verti
al y horizontal y el giro de �exión en la

base y parte alta del edi�
io normalizadas 
on el desplazamiento verti
al de 
ampo libre 
uando

la ex
ita
ión es un tren de ondas verti
ales de tipo P. Se in
luye también 
omo referen
ia la

respuesta en base rígida en la parte alta del edi�
io (línea negra punteada). El edi�
io está

sometido a la a

ión de ondas P 
on in
iden
ia verti
al, pero la naturaleza no simétri
a de la

se

ión transversal produ
e no sólo desplazamientos verti
ales w, sino también desplazamientos

horizontales u y giros de �exión θy. Se puede ver que el modelo es 
apaz de mostrar el efe
to de

la intera

ión suelo�estru
tura y la in�uen
ia del tipo de suelo en la respuesta de la estru
tura,

que produ
en diferen
ias signi�
ativas a partir de 4 Hz. Estas diferen
ias se pueden ver sobre
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todo en torno a los pi
os de las fre
uen
ias fundamentales. El re
uadro in
luido en la grá�
a

en la que se representa la fun
ión de respuesta del desplazamiento verti
al w en la parte alta

muestra una vista detallada del pi
o de la primera fre
uen
ia fundamental. Con respe
to a

la respuesta en suelos vis
oelásti
os drenados, 
uando el edi�
io está 
imentado en suelos

saturados de agua (vis
oelásti
o no drenado o poroelásti
os) las fre
uen
ias de resonan
ia son

mayores. La primera fre
uen
ia natural se in
rementa en un 10% de 3.4 Hz hasta 3.75 Hz.

Esta varia
ión por el 
ontrario es prá
ti
amente independiente de la 
onstante de disipa
ión

b, o de la naturaleza vis
oelásti
a o poroelásti
a del terreno. En 
uanto a la amplitud de los

pi
os, ésta si dependen del valor de b. Las magnitudes de la amplitud son muy similares 
uando

el terreno se modela 
omo vis
oelásti
o drenado o poroelásti
os 
on b = 0, mientras que las

amplitudes in
rementan 
on el valor de la 
onstante de disipa
ión, siendo el in
remento del

20% para b = 1.569 ·106
N/m

2
.

La �gura 6.29 muestra la respuesta en la base y la parte alta del edi�
io 
uando está sometido

a la a

ión de ondas S verti
ales que produ
en desplazamientos transversales en la dire

ión

del eje y. Debido a la ex
entri
idad, se representan las fun
iones de respuesta en fre
uen
ia de

la rota
ión torsional a · |θz/vff| junto 
on la del desplazamiento transversal |v/vff| y la del giro a

�exión a · |θx/vff|. La in�uen
ia en la respuesta del modelo de suelo es muy pequeña en este 
aso.

En 
ontraste 
on lo que pasaba para ondas in
identes de tipo P, las fre
uen
ias de resonan
ia

entre el modelo vis
oelásti
o drenado y el poroelásti
os 
on b = 0 son 
asi 
oin
identes. Sólo

se apre
ia un ligero in
remento 
on la 
onstante de disipa
ión b, siendo el 
aso vis
oelásti
o

no drenado el límite superior. La diferen
ia entre el límite inferior y superior de las fre
uen
ias

de resonan
ia está en torno al 4% para la primera y alrededor del 3% en torno a la segunda.

Estas tenden
ias son 
onsistentes 
on los resultados numéri
os publi
ados por Todorovska y Al

Rjoub [TAR06b℄, que presentan diferen
ias del orden del 2% para un modelo 2D. Los resultados

están también en línea 
on los datos experimentales presentados por Todorovska y Al Rjoub

[TAR06a℄ sobre el in
remento de las fre
uen
ias del edi�
io Milikan en Pasadena, California,

después de fuertes lluvias. En lo que respe
ta a la respuesta transversal-rota
ional a
oplada, el

efe
to de la naturaleza porosa del terreno de esta región en las fre
uen
ias de resonan
ia es

insigni�
ante para la primera y la segunda, e impli
a 
ambios no mayores del 1.5% en la ter
era

de ellas. Las amplitudes de los pi
os rela
ionados 
on éstas dependen de la permeabilidad del

terreno, 
on varia
iones del 5%.

El modelo, además de para estudiar los efe
tos de la 
onstante de disipa
ión b, puede usarse

para observar el efe
to de la 
ondi
ión de 
onta
to entre la 
imenta
ión rígida y el suelo.

En los resultados presentados hasta ahora en este apartado se asume 
ondi
ión de 
onta
to

impermeable (no drenada). Ahora se 
ompara la in�uen
ia en la respuesta según se 
onsidere

la 
ondi
ión de 
onta
to 
omo permeable o impermeable siendo b = 0. La �gura 6.30 muestra

las fun
iones de respuesta en fre
uen
ia del desplazamiento verti
al |w/wff|, del desplazamiento

horizontal |u/wff| y del giro de �exión a · |θy/wff| en la base y la parte alta (top) del edi�
io


uando in
iden verti
almente ondas de tipo P; y la �gura 6.31 que presenta las fun
iones en

fre
uen
ia del desplazamiento transversal |v/vff|, del giro de �exión a · |θx/vff| y de la rota
ión

por torsión a · |θz/vff| en la base y la parte alta del edi�
io 
uando la ex
ita
ión es una onda S

verti
al.

Estos últimos resultados muestran una importante in�uen
ia de la 
ondi
ión de 
onta
to 
uando

el sistema está sometido a ondas de tipo P, pero insigni�
ante en el 
aso de ondas S. Efe
tos

similares de la 
ondi
ión de 
onta
to pueden en
ontrarse en Japón et al [JGD97℄ para el estudio

de las fun
iones de rigidez dinámi
a de 
imenta
iones.

A 
ontinua
ión se estudiará el fenómeno de intera

ión estru
tura�suelo�estru
tura 
onside-

rando el suelo 
omo un semiespa
io poroelásti
o para el sistema formado por dos edi�
ios

separados una distan
ia d. Habiéndose estudiado la in�uen
ia del 
oe�
iente de disipa
ión y
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Figura 6.29: Fun
iones de respuesta en fre
uen
ia del desplazamiento transversal |v/v
�

|, el
giro de �exión a · |θx/v

�

| y la rota
ión torsional a · |θz/v
�

| en la base y la parte alta (top)

del edi�
io, 
imentado en un semiespa
io poroelásti
o, debidos a la a

ión de ondas S 
on

in
iden
ia verti
al. Modelo vis
oelásti
o (drenado y no drenado) y modelo poroelásti
o para

diferentes valores de la 
onstante de disipa
ión b.

de la 
ondi
ión de 
onta
to, para este 
aso se usa úni
amente el valor b = 0 
on 
ondi
ión de


onta
to impermeable (no drenada). Se presentan las fun
iones de respuesta del sistema de

dos edi�
ios para dos valores de la distan
ia entre edi�
ios d, 25 y 50 metros, 
onsiderando


omo ex
ita
ión ondas P o S 
on in
iden
ia verti
al. En el 
aso de la onda transversal de
ir que

ésta produ
e desplazamientos horizontales v en dire

ión del eje y, giros de �exión alrededor

del eje x y, debido a la ex
entri
idad de la se

ión de la estru
tura, giros de torsión alrededor

de la dire

ión del eje z. Las mallas MEC�MEF utilizadas son las mismas que las usadas en el

apartado 6.3.
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Figura 6.30: Fun
iones de respuesta en fren
uen
ia del desplazamiento verti
al |w/wff|, del
desplazamiento horizontal |u/wff| y del giro de �exión a · |θy/wff| en la base y la parte alta (top)

del edi�
io, 
imentado en un semiespa
io poroelásti
o, debidos a la a

ión de ondas P 
on

in
iden
ia verti
al teniendo en 
uenta diferentes 
ondi
iones hidráuli
as de 
onta
to.

En la �gura 6.32 se muestra la respuesta de un sólo edi�
io frente a la de dos edi�
ios 
er
anos


uando la ex
ita
ión es una onda P 
on in
iden
ia verti
al. Están representadas las fun
iones

de respuesta del desplazamiento verti
al |w/wff|, del desplazamiento transversal |u/wff| y del

giro de �exión a · |θy/wff| en la base y la parte alta de los edi�
ios. Los resultados para el

desplazamiento verti
al en la parte alta muestran la in�uen
ia en la respuesta del efe
to de

otra estru
tura 
er
ana. En torno a la fre
uen
ia fundamental, se observa que el valor de la

respuesta 
uando se 
onsideran dos edi�
ios separados una distan
ia de 25 metros, 
on respe
to

a la de un edi�
io aislado, 
re
e desde un valor de 3 hasta 
asi 4, esto signi�
a un aumento

del 33% en base a la respuesta del edi�
io aislado. Si la distan
ia d aumenta hasta 50 metros

el pi
o se desplaza ligeramente a una fre
uen
ia algo inferior aunque su valor es prá
ti
amente
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Figura 6.31: Fun
iones de respuesta en fre
uen
ia del desplazamiento transversal |v/vff|, del
giro de �exión rotations a · |θx/vff| y de la rota
ión torsional a · |θz/vff| en la base y la parte alta

(top) del edi�
io, 
imentado en un semiespa
io poroelásti
o, debidos a la a

ión de ondas S


on in
iden
ia verti
al teniendo en 
uenta diferentes 
ondi
iones hidráuli
as de 
onta
to.

el mismo que el que se da para una sola estru
tura. El efe
to en la respuesta del fenómeno de

intera

ión estru
tura�suelo�estru
tura se ha
e notable para el desplazamiento horizontal u y

el giro de �exión θy, donde se muestran grandes diferen
ias 
on respe
to a la respuesta de un

úni
o edi�
io, siendo estas diferen
ias mayores 
uanto menor es la distan
ia d.

La �gura 6.33 muestra la respuesta de un sólo edi�
io frente a la del sistema de dos edi�
io


er
anos 
uando la ex
ita
ión es una onda de tipo S 
on in
iden
ia verti
al, 
uyo 
ampo de

desplazamientos tiene 
omponente en la dire

ión del eje y. Están representadas por tanto las

fun
iones de respuesta del desplazamiento transversal |v/vff|, del giro de �exión a · |θx/vff| y del
giro de torsión a · |θz/vff| en la base y la parte alta de la estru
tura. Los detalles in
luidos en
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Figura 6.32: Comparativa de la respuesta del sistema formado por dos edi�
ios 
er
anos se-

parados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado, 
imentados en

un semiespa
io poroelásti
o. Fun
iones de respuesta en fre
uen
ia del desplazamiento verti
al

|w/wff|, del desplazamiento horizontal |u/wff| y del giro de �exión a · |θy/wff| en la base y la

parte alta (top) del edi�
io debidos a la a

ión de una onda P 
on in
iden
ia verti
al

las grá�
as de las fun
iones del desplazamiento transversal y el giro de �exión en la parte alta

(top) muestran los pi
os de amplitud a la primera y segunda fre
uen
ia fundamental. Para estas

variables no se observa una in�uen
ia importante en la respuesta de la distan
ia de separa
ión

d y las diferen
ias 
on respe
to a la de un edi�
io son mu
ho menores que en el 
aso de ondas

P. Para la primera fre
uen
ia fundamental, la respuesta 
uando se 
onsidera otra estru
tura


er
ana es de un 8% menor a la de un edi�
io aislado. En el detalle de la segunda fre
uen
ia

fundamental se observa un leve desplazamiento de la fre
uen
ia a la que se produ
e el pi
o de

la fun
ión de respuesta 
uando la distan
ia d = 25metros, y también un aumento en el valor

de la fun
ión de aproximadamente 3% si d=25 metros y 5% si d=50 metros.
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Figura 6.33: Comparativa de la respuesta del sistema formado por dos edi�
ios 
er
anos se-

parados una distan
ia d (25 y 50 metros) 
on la de un sólo edi�
io aislado, 
imentados en un

semiespa
io poroelásti
o. Fun
iones de respuesta en fre
uen
ia del desplazamiento desplaza-

miento horizontal |v/vff|, del giro de �exión a · |θx/vff| y del giro de torsión a · |θz/vff| en la base

y la parte alta (top) del edi�
io, 
imentado en un semiespa
io poroelásti
o, debidos a la a

ión

de una onda S 
on in
iden
ia verti
al

174



6.5 Intera

ión estru
tura�suelo�estru
tra. Ondas de Rayleigh.

6.5 Intera

ión estru
tura�suelo�estru
tra. Ondas de Rayleigh.

El modelo MEC�MEF presentado en el 
apítulo 5 se apli
a en esta se

ión para estudiar el efe
to

de la intera

ión estru
tura�suelo�estru
tura presentando resultados de la respuesta dinámi
a

del sistema que involu
ra dos edi�
ios idénti
os 
er
anos 
onsiderando 
omo ex
ita
ión una

onda de Rayleigh (onda de super�
ie) que se propaga desde la parte negativa del eje x y 
uya

amplitud se asume 
omo 
onstante a lo largo de toda la super�
ie libre del terreno (
ampo

in
idente 
on amortiguamiento nulo). Ambos edi�
ios están enfrentados uno 
on respe
to al

otro, siendo d la distan
ia entre ellos (25 y 50 metros). estudio.

Figura 6.34: Esquema de la vista isométri
a del problema de dos edi�
ios modelados 
on el

modelo MEC�MEF y 
onsiderando 
omo ex
ita
ión una onda de Rayleigh (onda de super�
ie)

La �gura 6.35 muestra la respuesta dinámi
a del sistema en términos de el desplazamiento

horizontal u, el desplazamiento verti
al w y el giro θy en la base y la parte alta de ambos edi�
ios,

normalizados 
on el desplazamiento horizontal de 
ampo libre uff. La respuesta 
onsiderando la

presen
ia de un úni
o edi�
io se in
luye en las grá�
as de la �gura 
omo referen
ia. La fre
uen
ia

fundamental del edi�
io en la dire

ión de la onda de Rayleigh ( f xz ≈ 0.5Hz) se observa en

todas las fun
iones de respuesta, más 
laramente en el desplazamiento transversal y el giro de

�exión. En 
asi todo el rango de fre
uen
ias, la respuesta del edi�
io B es signi�
ativamente

menor que la del edi�
io A (primero en re
ibir el frente de onda). In
luso la magnitud de la

respuesta del edi�
io B es también menor que la de un úni
o edi�
io sin otras estru
turas


er
anas. Esto se debe a la energía 
inemáti
a que llega a la 
imenta
ión del edi�
io B, la 
ual

experimenta una redu

ión 
on respe
to a la que llega al edi�
io A 
omo 
onse
uen
ia de la

presen
ia de este último, el 
ual, por 
ontra, presenta una respuesta mayor que la de un sólo

edi�
io en 
iertos rangos de fre
uen
ia debido a la energía que se re�eja rebotada desde la


imenta
ión del edi�
io B.

Con el �n de ilustrar este efe
to de es
udo que produ
e el edi�
io A 
on respe
to al B, la

�gura 6.36 muestra el desplazamiento verti
al absoluto en la super�
ie libre y el 
ontorno de

las 
imenta
iones del sistema ex
itado por ondas de Rayleigh asumiendo las 
imenta
iones sin

masa (la presen
ia de las superestru
turas no se 
onsidera para estudiar sólo la 
inemáti
a del
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Figura 6.35: Fun
iones de respuesta en fre
uen
ia del desplazamiento transversal |u/u
�

|, del
desplazamiento verti
al |w/u

�

| y del giro de �exión a · |θy/u
�

| en la base y la parte alta (top)

de ambos edi�
ios debido a la in
iden
ia de ondas de Rayleigh.

problema, aunque la respuesta del sistema 
ompleto es análoga a la mostrada). Se presentan

resultados para ambos valores de la distan
ia d=25 y 50 metros, y respe
tivamente para los

valores de fre
uen
ia 2.8 Hz y 3.3 Hz, los 
uales 
orresponden a los pi
os de amplitud que

pueden observarse para la respuesta verti
al en la parte alta del edi�
io en la �gura 6.35. Se

observa un 
laro efe
to de sombra, 
omo una notable disminu
ión de los desplazamientos que

experimentan los puntos sobrepasado el edi�
io A, lo 
ual expli
a, 
omo ya se ha 
omentado,

la menor energía 
inemáti
a que llega al edi�
io B.
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d=25 m, f =2.8 Hz

d=50 m, f =3.3 Hz

Figura 6.36: Mapas de 
olor del desplazamiento verti
al w sobre la super�
ie libre y el 
ontorno

de las 
imenta
iones del sistema ex
itado por ondas de Rayleigh 
onsiderando las 
imenta
iones

rígidas y sin masa.
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Revisión, 
on
lusiones y

desarrollos futuros

Capítulo7

7.1 Revisión y 
on
lusiones

El trabajo realizado durante la 
onfe

ión de esta tesis se enmar
a en el estudio de la respuesta

dinámi
a y sísmi
a de estru
turas enterradas. Este tipo de problemas ha sido históri
amente

de mu
ho interés para la 
omunidad ingenieril desde la 
onstru

ión de estru
turas masivas

(p.e. rea
tores nu
leares, et
.) 
uyo 
olapso podría poner en riesgo a la pobla
ión 
ivil. En el

seno del grupo de investiga
ión se han desarrollado en los últimos años modelos numéri
os

basados en el Método de los elementos de Contorno (MEC), los 
uales se pueden apli
ar 
omo

herramienta para estudiar este tipo de problemas, entre otros, en los que el efe
to de intera

ión

suelo�estru
tura juega un papel fundamental.

Siguiendo la línea de trabajo del grupo sobre problemas de intera

ión suelo�estru
tura, en esta

tesis se ha apli
ado un modelo numéri
o 3D en el dominio de la fre
uen
ia y basado en el MEC,

previamente desarrollado, en problemas de este tipo para estudiar la importan
ia de 
onsiderar

o no la verdadera �exibilidad de la estru
tura. En prin
ipio se ha apli
ado a un problema real

que por su tipología y dimensiones, históri
amente en la bibliografía existente se ha estudiado

apli
ando metodologías que 
onsideran la hipótesis de rigidez in�nita de la estru
tura. Se ha

estudiado por tanto la respuesta sísmi
a de una estru
tura real utilizado este modelo numéri
o

MEC para 
omparar los resultados obtenidos, por un lado, a través del método de los tres pasos

y, por otro, apli
ando una metodología dire
ta. Con la primera se asume la rigidez in�nita

de la estru
tura y el 
ál
ulo de la respuesta se realiza en pasos su
esivos, por 
ontra 
on la

metodología dire
ta se tiene en 
uenta la �exibilidad de la estru
tura, y de manera más rigurosa

los fa
tores que in�uyen en la respuesta del sistema. La 
omparativa de los resultados eviden
ia

diferen
ias importantes en la respuesta de esta estru
tura, de manera que se puede infravalorar

la magnitud de la misma al asumir la estru
tura 
omo in�nitamente rígida. por tanto se pone

de mani�esto que la ele

ión de la metodología de 
ál
ulo para estos problemas 
lási
os de

intera

ión suelo�estru
tura supone un asunto al que debe prestarse la debida aten
ión, así


omo que la evalua
ión pre
isa de la rigidez de la estru
tura es determinante.

En la línea de estudiar la importan
ia de la 
onsidera
ión de la verdadera �exibilidad estru
turas
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enterradas, 
onsidera
ión de la �exibilidad de la estru
tura se realiza un estudio paramétri
o

sobre este aspe
to del problema. Los parámetros que se tienen en 
uenta para el estudio son

la esbeltez de la estru
tura, la profundidad de enterramiento, la velo
idad de propaga
ión del

suelo y si la estru
tura es ma
iza o hue
a. Se ha 
uanti�
ado el error 
ometido en la obten
ión

de la respuesta sísmi
a bajo la hipótesis de rigidez in�nita de la estru
tura, de manera que

se ha intentado presentar un 
riterio de utilidad para la prá
ti
a ingenieril en el ámbito. Así,

dependiendo de la geometría de la estru
tura, el valor relativo de las propiedades de la misma


on respe
to al suelo, ha sido posible estable
er un orden de magnitud de los errores 
ometidos

en tal 
aso. Por la ne
esidad de obtener la respuesta para una importante 
antidad de 
asos

diferentes se es
oge 
omo herramienta de 
ál
ulo menos 
ompleja y 
ostosa que el MEC. Se

ha utilizado un modelo Winkler que 
onsidera la estru
tura 
omo un elemento viga o un sólido

rígido según el 
aso, y la intera

ión 
on el suelo se ha tenido en 
uenta a través de elementos

resorte�amortiguador distribuidos a lo largo de la parte de la estru
tura que se en
uentra

enterrada. Los resultados obtenidos y teniendo en 
uenta las simpli�
a
iones para la apli
a
ión

de este modelo Winkler, se han estable
ido unos límites 
laros fuera de los 
uales no resulta

re
omendable la utiliza
ión de métodos que no tengan en 
uenta el efe
to de la �exibilidad de

la estru
tura.

Posteriormente se ha abordado el desarrollo del modelo numéri
o MEC ya men
ionado, in-


orporando al mismo nuevas presta
iones. Se ha formulado un modelo a
oplado de elementos

de 
ontorno y elementos �nitos (MEC�MEF) para el estudio prin
ipalmente de estru
turas de

edi�
a
ión. En este sentido se in
orpora el a
oplamiento de regiones rígidas (
imenta
iones)


on medios vis
oelásti
os o poroelásti
os deformables, y 
ondi
iones de 
onta
to permeable e

impermeable. La superestru
tura de los edi�
ios se modela ha
iendo uso de elementos �nitos

tipo viga Timoshenko 
on propiedades equivalentes. Ambas estrategias garantizan problemas


on un grado razonable de grados de libertad y permitiría analizar de manera viable desde el

punto de vista 
omputa
ional la respuesta sísmi
a de varios edi�
ios 
er
anos simultáneamente.

En lo que se re�ere a la ex
ita
ión, se in
luye la posibilidad de la a

ión de trenes de onda


on in
iden
ia variable en el 
aso del semiespa
io vis
oelásti
o, o 
on in
iden
ia verti
al en el


aso de terrenos de naturaleza poroelásti
a. Se ha validado el modelo y se presentan resultados

obtenidos al apli
ar éste al estudio de problemas de intera

ión suelo�estru
tura y estru
tura�

suelo�estru
tura. Se ha estudiado la in�uen
ia en la respuesta de un úni
o edi�
io aislado del

ángulo de in
iden
ia de ondas P, SV y SH en terrenos vis
oelásti
os y también el efe
to de la

intera

ión estru
tura�suelo�estru
tura por la presen
ia de otra estru
tura 
er
ana. En el 
aso

de terrenos de naturaleza poroelásti
a se presentan resultados para medir las varia
iones del

valor de la respuesta 
on la 
onstante de disipa
ión y/o la 
ondi
ión de 
onta
to, así 
omo

también el efe
to de la intera

ión estru
tura�suelo�estru
tura, 
onsiderando 
omo ex
ita
ión

ondas transversales o longitudinales 
on in
iden
ia verti
al.

7.2 Desarrollos futuros

Los desarrollos futuros más inmediatos están en la in
orpora
ión progresiva de nuevas presta-


iones al modelo a
oplado BEM y (sobre todo) al modelo BEM�FEM para edi�
ios.

1. Presta
iones desde el punto de vista numéri
o, en el sentido de ha
erlo más e�
iente y


apaz de afrontar problemas que ahora podrían ser 
ostosos y difí
iles de llevar a 
abo.

En esta línea está la in
orpora
ión de solu
iones fundamentales avanzadas de semiespa
io

vis
oelásti
o estrati�
ado. El modelo 
on este tipo de solu
iones fundamentales no pre
isa

de la dis
retiza
ión del semiespa
io, permitiendo además tratar suelos estrati�
ados 
on

un importante ahorro en el tamaño del problema. En esta línea se desarrolla en el momento
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a
tual una Tesos Do
toral en el Grupo de Trabajo. Centrados en el 
ódigo BEM�FEM

para edi�
ios, este desarrollo se suma a las ventajas 
omputa
ionales implementadas

dando 
omo resultado un modelo muy e
onómi
o que permitirá abordar problemas 
on

un gran número de edi�
ios, estudiar intera

iones mutuas o en que medida 
ambian

las 
ara
terísti
as del 
ampo in
idente debido a su presen
ia (efe
to 
iudad). Sería un

modelo riguroso sin pre
edentes que permitirá validar otros muy simpli�
ados que existen

en la bibliografía para estudiar este problema.

2. En la de�ni
ión de la ex
ita
ión sísmi
a. En esta línea, y para el semiespa
io vis
oelásti
o,

ampliar el modelo de ex
ita
ión sísmi
a general presentado al 
aso de suelos estrati�
ados.

En rela
ión 
on el modelo BEM-FEM presentado, este avan
e está en la línea 
on el

primero (solu
iones fundamentales avanzadas) y ambos permitirán un 
ódigo muy general

para el análisis sísmi
o de edi�
ios. También, ampliar la de�ni
ión del 
ampo in
idente

para semiespa
ios porosos. En esta Tesis Do
toral se presentan resultados para el 
aso de

in
iden
ia verti
al, se propone trabajar en una rutina que in
orpore, en primera instan
e,

la posibilidad de ondas SH, SV, P y Rayleigh 
on 
ualquier ángulo de in
iden
ia sobre el

emplazamiento para este tipo de medios.
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