UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA

ESCUELA TECNICA SUPERIOR
DE INGENIEROS INDUSTRIALES

PROYECTO FIN DE CARRERA

INFLUENCIA DE LAS CA’RACTERI'STICAS DE LA EXCITACION
(TIPO DE ONDA Y ANGULO DE INCIDENCIA) EN LA
RESPUESTA SISMICA DE UNA ESTRUCTURA

AUTOR: BORJA GUERRA RIVERO

TUTORES: ORLANDO MAESO FORTUNY
JUAN JOSE AZNAREZ GONZALEZ

JULIO, 2009



Introduccién

indice general

R [ o1 o o [3 o o ] [ PEEPURRR 5
1.1 ANEECERUEBNIES. ..ottt et e e e e e e e e e e e e eeeeeeesennnes 5
1.2  ODbjetivos del PrOoYECO. ......uvuureiiiiie et e e 6
1.3 Factores que influyen en la respuesta sismica @estnuctura. ........... 8

1.3.1 Factores que influyen sobre los desplazamientasuago libre..... 9

1.3.2 El caracter espacial de la excitacion. .......ccccccc.ooeeeeeiiiiiiiiiiiiinnnn, 9

1.3.3 FenOmenos de interaccion dinAmICa. ........ceeeeeeeeeeeeeeeeiiiiiiinnnns 10
1.4 Metodologia utilizada. ...........cooeeveiiiiimmmmmee e 11
1.5 Descripcion de l0S contenidos. ............eceeemmereniiiiiieeeeeeeeeeeeeeeeeiainnens 14

2 Ecuaciones de la EIastodiNnAmiCa ... eeeeeeinmnmieiniiiiieeiereeeeeaaeens 15
Y2205 N [ 0 To [ Tt od T o SRR 15
2.2 Propagacion de ondas en problemas escalares ig@ast................ 16

2.2.1 Ecuaciones basicas de la Elastodinamica Lineal................... 16

2.2.2 Propagacion de ondas en medios viscOoelastiCOS. caunvvvverrnn.... 19
2.2.3 Ondas de presion en fluidos. ..........cceeeeeeeiiiiiiiiiiiiiiiiiiieeeeeeeen 23
2.3 Ecuaciones de gobierno en el dominio de la fredaenc.................. 25
2.4 Formulacion integral del problema..........cccceeee i, 27

2.4.1 Formulacion integral para el problema viscoelasti&olucion

fFUNAAMENTAL AIMNONICAL «.ev et et e e e e e e e eaeeeee e 27




Influencia de las caracteristicas de la excitaeibta respuesta sismica de una estructura

2.4.2 Formulacion integral para el problema escalar. &otu

fundamental ArMONICAL ... ..o e e ee e 35
3 El Método de los Elementos de CONtOrMO.....coceceeeeeeeeeeeeeeeeeeeeeaaen 39
I R 101 1 {0 Yo [¥ [ole3 o ] o VAN 39

3.2 Aplicaciéon del Método de Elementos de Contorno (MEG un medio

viscoelastico.39

3.3 Aplicacién del Método de Elementos de Contorno (MEG un medio

escalar. 43
3.4 Acoplamiento entre regioNES. ...........uuermmmmmmmeeeeeeeereeeeeerennnnn 46

3.4.1 Interfase viscoelastico-viSCOelastiCo. .....coeeeeeeeeeeeeieeeennnn 47

3.4.2 Interfase escalar-eSCalar. ............viuicemceme e 48
3.4.3 Interfase ViSCOEIAStICO-ESCAlar. .........oceeieeeieeeeieeeeieeeeee e eeans 48
3.5 Aspectos relacionados con la aplicacion del MEC............cccce..... 53

3.5.1 Tipos de elementos de CONLOINO............. o eeeeeeeeeeerennnnnnnnnnnns D3
3.5.2 Evaluacion de las integrales en el contorno. Sarglddes. ......... 55
3.6 Duplicacion de nodos en los bordes angulosos. &mbde esquina. 58

3.7 Solucion al problema de un semiespacio de geomeitrgraria

acoplado a una estructura y excitado con ondasS\§tR 6 Rayleigh). ................... 61
4 Ecuaciones de propagacion de las ondas sismicaS.............ccooeevevvnnnne 64

vt R [ 1 10T [V Todox o o AP PUPPUPURURR 64

N © 1 0T £ ) PSSR 64

4.2.1 Campo de desplazamientos............ccoevveeeeenuiiiiiiee e eeee e 65




Introduccién

4.2.2 Campo de deformaciones...........oeevvvuvvimmmmmmmieeeeeeeeeeeeeeeeeeeennnnanns 66
4.2.3 Campo de TENSIONES ...ccoieee it ieeeemmme s e e e e e e e e e e eeeeeeeeaaeees 67
4.3 ONAA P .o 69
4.3.1 Campo de Desplazamientos..........cccooiiicceeeeeeeeeeeie e 70
4.3.2 Campo de deformaciones............oevvvuvvimmmmmmmieeeeeeeeeeeeeeeeeeeenninanns 71
4.3.3 Campo de TENSIONES ...ccoeeeeieieiiieeeeeetieeeemmme s e e e e e e e e e eeeeeeeeaaeees 74
4.4 ONAA SV ..ot 80
4.4.1 Campo de Desplazamientos ..........cooiiiiiccceeeieeeiiieii e 81
4.4.2 Campo de deformaciones............evvvvuvvimmmmmmmeeeeeeeeeeeeeeeeeeeeenannnnns 84
4.4.3 Campo de tENSIONES .....cccevveeeeeeierveeimmmmmmme e e e e e e e e e e eeeeeeeeeans 87
4.4.4 Calculo de las AMPtUdES ......ccooviiiiiiiiieecce e 90
4.4.5 Laonda SV yelangulo CritiCO..........ceeicceeivviiiiiiiiiiiiiieeeee e 96
4.5 Onda Rayleigh ....cccoieieeeicie e 102
4.5.1 Calculo de las amplitudes ................e. e eeennnnninneeeeeeeeeeeene 109
4.5.2 Campo de deformaciones............euuuuvummmmmme e 116
4.5.3 Campo de TENSIONES .....oeeeeiiiiiieiieiiitiemmmmmme e e e e e e e e e eeeeeeeeeaanen 117
4.6 Coordenadas generales ..........cccceeeeeiieeeeeeeee e 120
4.6.1 EXPresSiones geNEraleS .........ccccoiieeees e eeeeeeeeeeennnnnnnnnnnnnnnns 131
5 RESUIAUOS ....coviiiiiiiieieiei e mmmmmme ettt 137
5.1 INrOAUCCION. ....eeiiiiiiiiiiiiie et 137

5.2 Estructura cilindrica semienterrada en el semiégpac.................. 138




Influencia de las caracteristicas de la excitaeibta respuesta sismica de una estructura

5.2.1 Discretizacion Utilizada. .............ccuvvvieeeenee e 139
5.3 Planteamiento del primer problema. ..........oeeeiiiiii 142
5.3.1 ONAa SH ... 145
5.3.2 ONAA P .ottt 153
5.3.3 ONAA SV .. e 160
5.4 Planteamiento del segundo problema. .........cccciiiiiiiciiinnn. 168
5.4.1 Presa de MOrrow POINt..........ccccuiiiiiimmmmmmeieeeeeeeeeee e 169

5.4.2 Influencia del angulo de incidencia sobre la resfauele la presa.

172
6 Conclusiones y desarrollos fUtUrOS ..........cceeeeviveeiiiiiiiiiciieee e, 179
6.1.1 ReVISION Y CONCIUSIONES. ......uuviriiiiiiiiieeeeeereeeeeeeeeeeeeaeeeeaaaaaaaeans 179
6.1.2 Desarrollos fUtUrOS. ........cooiiiiiiiiiiiitceeeee e 181

7 Bibliografia




Introduccién

1 Introduccion

1.1 Antecedentes.

Existen multitud de problemas de analisis estrattem los que las acciones son
variables en el tiempo de forma que, tanto loste$einerciales como el analisis
propiamente dicho, han de ser considerados desdparspectiva dinamica. Entre ellos

se encuentran aquellos en los que la estructiwsanestida a una solicitacion sismica.

El caso de excitaciones sismicas y la respuestaicsisde estructuras es un

hecho que destaca por su importancia dentro dgdcam la ingenieria.

En lo que nos concierne al caso de las excitacieisesicas, éstas constituyen
un campo notable de investigacion dentro de landiced de estructuras debido, en gran
parte, al efecto devastador que dicho fendmenoeplieglar a producir sobre la misma.
Son muchos los aspectos del problema, desde laapdafinicion de la excitacion
sismica hasta el comportamiento acoplado de laatsta con el suelo de cimentacion,
los cuales han sido objeto de aportaciones cieasifien numerosas publicaciones

dedicadas al tema.

No obstante, aln existen gran cantidad de aspeaidtssonocidos 0 no
entendidos en su totalidad. Entre algunos de estpsctos destacamos el factor mas
determinante del problema, la excitacion sismieacual es la gran desconocida.
Aspectos tales como el caracter aleatorio de lataeX@n y la incertidumbre sobre
aspectos del emplazamiento, complican en gran meelidestudio de este tipo de

problemas.

El analisis sismico de estructuras es un temaatagitla division de Mecéanica
de Medios Continuos y Estructuras, pertenecientesaituto universitario SIANI, al

cual me he incorporado para poder llevar a cabedlizacion del presente proyecto.

En lo referido a esta divisidn, existe un grupardestigadores y colaboradores
que trabajan, desde hace afios, en modelos panaliissismico de estructuras (mas

concretamente para el caso de presas béveda)rEfigpque, todo lo realizado en este
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proyecto fin de carrera, debe entenderse como umiopy seguido en el trabajo
realizado por dicho personal de investigacion. Bima instancia, resefiar que el
software necesario para poder llevar a cabo losulcd que han hecho posible este

proyecto, ha sido desarrollado por el propio grdganvestigacion.

A través de esta linea de trabajo se pretenderdpaso mas en el conocimiento
de la influencia de la excitaciobn en la respuedtmisa de la estructura, mas
concretamente en estructuras de contencion de .adues nuevas lineas de
investigacion iniciadas y que, algunas de ellasdido desarrolladas en este proyecto,
ofrecen diversas vias con posibilidad de admitiprofundo desarrollo en un futuro no

muy lejano.

Se trata, por tanto, de un proyecto en el cuareatos de poner de manifiesto
determinados factores que pudieran ser importaeteslas caracteristicas de la
excitacion sismica, asi como la influencia de ésnsla respuesta sismica de la

estructura. Dichos factores seran tratados comyraraprofundidad de analisis.

1.2 Objetivos del proyecto.

La realizacion del presente proyecto tiene comacppal objetivo determinar la
influencia de determinadas caracteristicas de ¢#aexon en la respuesta sismica de
una estructura. Mas concretamente, dicho estudices¢rara en el tipo de onda

propagada asi como el angulo con el que dichaiocdie en el terreno.

Para ello, se definira un primer problema que seesponde con el analisis
sismico de una estructura cilindrica, de unas ohke@das dimensiones, la cual se
encuentra parcialmente enterrada en el terrenadspatio). Este primer problema sera
utilizado como un ejemplo de comprobacion, a finceetificar que la inclusion del
nuevo angulo de incidencia en la formulacion referea la propagacion de las ondas

sismicas ha sido correcta.

Posteriormente abordaremos un segundo problemeyatl consistira en una

estructura de contencion de aguas. Sera en estendeegoroblema, donde nos
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centraremos en algunos de los factores que det@nm@n mayor o menor medida, la

respuesta sismica de una estructura.

A modo de concretar, el analisis se centrara eobtancién de la respuesta
dinamica de la estructura provocada por un treondias que se propaga por el suelo,
centrandonos en aspectos tales como el angulacdientia de la onda, asi como el tipo

de onda que se esté sometiendo al analisis ensaate.

Se trata, por tanto, de un trabajo de gran condjgl@éjgque nos permitira obtener
conclusiones claras en relacion a los objetivos sgiepersiguen. Es por ello que
trataremos de presentar este proyecto de la mameseaclara y precisa posible, con el
fin de elaborar un material que pueda ser utilizado personal de investigacion

cualificado.

Existen, no obstante, otros objetivos relacionamwsla formacion del ingeniero
propiamente dicho. Y es que aparte de la formaerdmateria de investigacion, no se
debe dejar de lado la formacién relacionada corditéimica de estructuras. A

continuacion, detallamos los objetivos a teneriamta:

1. Estudio de las bases de la Elastodinamica lin@algal vital importancia
a la comprension de los fendbmenos de propagaci@ndas elasticas y
su correspondiente formulacion matematica.

2. Estudio de los diferentes modelos de excitaciomis#s vinculados a la
propagacion de ondas elasticas a traves del teramoprension de la
naturaleza propagatoria del sismo, cuestion de gngortancia en el
caso de estructuras de gran tamafo.

3. Estudio de las bases de los métodos numéricos auedrvido para el
desarrollo de software aplicable al analisis dgpagacion de ondas en
medios elasticos y al andlisis sismico de estrastuEste ha sido
desarrollado por los integrantes de la divisiohgeanica de los Medios
Continuos y Estructuras, la cual se encuentra iasat IUSIANI
(Instituto  Universitario de Sistemas Inteligentes Aplicaciones
Numéricas en la Ingenieria). En el momento actdalho software

permite la simulacion de un tren de ondas planaucoangulo variable,
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aunque con una importante limitacion; y es que,dieccion de
propagaciéon del campo incidente estd contenida en plano
perpendicular al plano de simetria de la estructbeapretende con este
proyecto final de carrera, superar esta limitaciorpoder abordar
situaciones mas reales. Por ello, la tarea masriaie a realizar en
dicho proyecto ser& la formulacion e implementaciérun tren de ondas
plana con incidencia general.

4. También, y ya ampliadas las capacidades del cédapcentraremos en
su aplicacion al estudio de la influencia del cemade la excitacion (tipo
de onda y angulo de incidencia) en la obtencidladespuesta sismica
mas desfavorable de la estructura para un registroampo libre del
emplazamiento conocido a priori.

5. Finalmente, obtendremos una amplia gama de ressltaque
plasmaremos de un modo muy claro, con el fin de&gties puedan ser
utilizados como material didactico o, incluso, comaerencia para

estudios de investigacion futuros.

1.3 Factores que influyen en la respuesta sismica deaiastructura.

Resulta fundamental ubicar el factor de segurisdadocuno de los aspectos que
mas se debe tener en cuenta en la vida profesieh@igeniero, puesto que gran parte

de recursos, medios de produccion y vidas humagzenden de ello.

La conciencia tomada por técnicos cualificadosaeemaéteria ha conducido al
desarrollo de costosas precauciones. Gracias aetlimpacto de las catastrofes por
fallo de la estructura ha sido relativamente pequbli® obstante, el poco conocimiento
que se tiene sobre el problema y la magnitud dphato que pudiera ocasionar dicho
problema, hacen necesario emprender nuevos estadasificos y técnicos que
contribuyan a acercarnos al conocimiento pleno pteblema. Obtener de manera
precisa la respuesta sismica de una estructuralamtieatoriedad que representa un
terremoto es uno de los objetivos de muchos denl@stigadores que trabajan en este

campo.
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En lo dltimos tiempos se han llevado a cabo graadaaces en el estudio de la
respuesta sismica de estructuras. Sin embargdemX@ctores que, aun hoy en dia,
siguen siendo una incognita. En la medida de libfmsste proyecto tratara de realizar
una pequefia aportacion al conocimiento de alguac®res que todavia no se han

estudiado en profundidad.

Como ya se ha comentado, existen multitud de aspegtie tienen gran
influencia en la respuesta sismica de una estaicfucontinuacion, realizaremos una
clasificacion en este sentido, si bien, estos feamm® no son absolutamente

independientes entre si.

1.3.1 Factores que influyen sobre los desplazamientasadeo libre.

Los desplazamientos de campo libre en puntos degarficie del terreno son
los provocados por la accién de las ondas sisrsinasner en cuenta la presencia de la
estructura. Si en el modelo estudiado los fenOmededsteraccion pueden obviarse, el
estudio dinamico de la estructura podra realizatdsizando como excitacion sobre la

cimentacion las expresiones conocidas de este cdengesplazamientos.

Los desplazamientos de la superficie libre dektesrestan influenciados, de un
lado, por la composicion de las ondas sismicasgngulo de incidencia; y por el otro,
por las caracteristicas geoldgicas y topografiedsethplazamiento. La influencia de
este efecto asociado al emplazamiento sobre lasaciares del campo de
desplazamiento en la superficie libre ha sido puelst manifiesto por multitud de

estudios tedricos y experimentales.

1.3.2 El caracter espacial de la excitacién.

Hace referencia este factor al caracter viajertagi®ndas sismicas y al tamafio

de la estructura analizada.

Asi, el analisis convencional de la respuesta sBshe estructuras considera que
el problema puede resolverse con una excitacianticd@que actia en todos los puntos

de la cimentacion de la estructura. Esta hipétesia admisible en el caso de suelos
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infinitamente rigidos o que las dimensiones desteuetura sean inferiores a la longitud

de onda caracteristica del movimiento sismico.

Sin embargo, para estructuras con unas dimensamesden de la longitud de
la onda que se propaga, deberan tenerse en cuentaribcion del campo de
desplazamientos entre diferentes puntos de la tacién, no siendo valida la hipotesis
de suelo infinitamente rigido. Para el caso de dozblemas que llevaremos a la

practica, no realizaremos esta ultima consideracién

1.3.3 Fendémenos de interaccién dindmica.

Son multitud los estudios que han confirmado laartgncia de los fendmenos

de interaccion en la respuesta sismica del sistema.

Asi, ya en primera instancia los desplazamientosaesuperficie del terreno
provocados por las ondas sismicas se veran altepda presencia de la estructura.
Esta alteracion del desplazamiento vendra detedajren gran medida, por la relacion
entre la rigidez de la estructura y la rigidez teeteno sobre el que dicha estructura se

sustenta.

En el caso de considerar un suelo mucho mas rigidda estructura, podemos
concluir que los desplazamientos en la base deslmanseran idénticos a los de campo
libre. No ocurre asi para casos en los que sejéraba suelos mas flexibles, ya que en
este caso la rigidez de la estructura influye témben los desplazamientos de la
interfase entre los dos medios. Por otra parteotssideracion del terreno como un
medio flexible acoplado con la estructura modifiea frecuencias propias en la

respuesta de la estructura, asi como provoca uerdorde la energia disipada.

Con la inclusion del agua en el modelo se increamerbs fenomenos de
interaccion entre los distintos medios. La respuessmica del modelo vendra
determinada por la interaccién conjunta entre estedios, presentandose diferencias
significativas con respecto a modelos que no tiegrercuenta esta interaccion, los

cuales no estan analizando de forma completa blgoma real.
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1.4 Metodologia utilizada.

A modo informativo, existen un nimero de problemlasnteados en ingenieria,
de los cuales es posible obtener la solucién &wlitbteniendo la resolucion de un
sistema de ecuaciones planteado a partir de |laxieogs de gobierno; sin embargo,
debemos de decir que el nimero de problemas quizobe a este planteamiento es
bastante menor que el nimero de problemas queasig@h con frecuencia en el mundo

de la ingenieria.

El problema que aqui planteamos no se encuentteod#sl reducido grupo de

los que tienen solucién analitica.

En épocas pasadas, la posibilidad de afrontar oblgma a través de técnicas
numeéricas resultaba una utopia. No obstante, gradia evolucién tecnoldgica que han
experimentado las maquinas de calculo, dichos rnétoduméricos se consideran
actualmente imprescindibles por la multitud de axs que aportan, como puede ser el
obtener una solucion aproximada del problema com precisibn y un costo

computacional razonable.

Por lo que respecta al método, existe un amplioendrde ellos que pueden ser
utilizados como base del estudio del problema guieaya planteado. En nuestro caso,
se empleara el Método Directo, el cual basa suidnamiento en el andlisis conjunto
de todos los medios implicados en el problema.

En lo que se refiere a la solucion del problemts s puede obtener tanto en el
dominio del tiempo como en el dominio de la fremi@nEn el dominio del tiempo,
todas las variables tendran dependencia tempardiépdose seguir una estrategia de
resolucidn paso a paso; en lo referido al an&isisl dominio de la frecuencia, sera éste
el que emplearemos para obtener la respuesta aigmios problemas que se planteen.
Las variables para este tipo de analisis seranpdearmonico. En el dominio de la
frecuencia, podremos obtener una simplificacion artgnte de las ecuaciones que
gobiernan el comportamiento elastodinamico de ledias implicados en el andlisis. A
modo de explicacion, basicamente el procedimiemiosiste en la obtencion de la

funciéon de transferencia del sistema, mediantedalucion del sistema de ecuaciones
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surgido a partir de la aplicacion de un método mouéobre la formulacion integral en
el contorno de las ecuaciones de gobierno del @mudol Haciendo uso de estas
funciones de transferencia y de la TransformadaFarier, podremos obtener la
solucion temporal aproximada del modelo frente @ excitacion sismica determinada.

Dicho procedimiento, sera explicado con gran prdided en capitulos posteriores.

Pero no todo son ventajas en lo que a la utiliracié la formulacién en el
dominio de la frecuencia se refiere, puesto quenébque del analisis desde dicho
dominio no permite tener en cuenta posibles nalidades. Ademas, la obtencion de
una respuesta temporal correcta requiere que sguaplna gama de frecuencias

bastante alta en el andlisis.

Abordando un aspecto tan importante como es elduoéde calculo utilizado,
existen diversas técnicas numéricas empleadas lparabtencion de soluciones
numéricas de problemas de dinamica de estructiistas pueden dividirse en dos
grandes grupos, técnicas de dominio o técnicas agomo. Los métodos mas
importantes de estos dos grupos son: el Métoddededntos Finito (MEF) y el Método
de Elementos de Contorno (MEC). Cada uno presesttgajas e inconvenientes que
analizaremos a continuacion; no obstante, el MEStltee mas adecuado cuando se

pretende realizar el analisis sismico de una dstaic

Por lo que respecta al MEC, éste se aplica sobfermaulacion integral en el
contorno de las ecuaciones de gobierno del probl&icha formulacion relaciona las
variables primarias del problema (desplazamients presiones) y sus derivadas
(tensiones y/o derivada de la presion) a travéardproblema de referencia (solucion
fundamental). El tratamiento numeérico de las earss exige la discretizacion de los
diferentes contornos en elementos. Dentro de dedzeato, la geometria del problema
y el valor que toman las variables se aproxima mpedio de unas funciones de

aproximacion convenientemente escogidas, a pa&itiralor en los nodos del elemento.

Con todo esto y un conjunto de soluciones fundaalentindependientes, la
igualdad integral en el contorno de partida podednsformarse en un sistema de
ecuaciones algebraicas que permitira la obtencerurth solucion aproximada del

problema.
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A continuacion realizaremos una breve comparaanbreel MEC y el MEF, la
cual nos permitira comprender el por qué de lazatién del MEC para abordar
problemas de analisis sismico.

Por un lado, en el MEC se discretiza solo el comtate los diferentes medios
implicados en el problema, provocando que el siatel® ecuaciones resultante sea
menor. A su vez, el proceso de elaboracion deitasatizaciones resulta mas sencillo.
No obstante, el tiempo de computacion para obfarsslucion usando el MEC no debe
ser necesariamente menor que el que se necesitdocebmétodo usado es el MEF.
Esto puede ser debido a que, por las caractesstelaVIEC, en la matriz del sistema de
ecuaciones a resolver la cantidad de ceros seaeii@gdando lugar a tiempos de
computaciéon elevados. Por lo que respecta al M&-tdrminos no nulos de la matriz
de coeficientes del sistema de ecuaciones sudi@naggupados en torno a la diagonal

principal, lo que hace que el tiempo de computapigeda ser menor.

Otro aspecto a tener en cuenta es el de que, cdasdpropiedades de los
medios son no lineales, existe una dificultad af@mdPara tratar de solucionar este
inconveniente, se deben incluir integrales de danen la formulacién integral, lo que

puede acabar con las ventajas del MEC.

Sin embargo, existe una ventaja fundamental queiexda al MEC en el método
indicado para la resolucién de los problemas quaagean en este proyecto frente al
MEF. En relacion a este ultimo, el MEC permite eomplar de forma muy natural
dominios infinitos o semi-infinitos. Y es aqui denths técnicas numéricas como el
MEF se encuentran con la dificultad de cuantiflegoorcion de dominio a discretizar.
Es mas, se han encontrado con el inconvenientefiderccontornos artificiales que, en
problemas dinamicos, provocan reflexiones ficticthes las ondas, provocando una
modificacion en la solucién del problema y haciende ésta sea menos fiable. Se han
realizado numerosos intentos con el fin de amineste efecto, consiguiéndolo sélo en

parte mediante la ayuda de algunas técnicas.
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El Método de Elementos de Contorno, por el cormtresdlo requiere que se
discretice cierta cantidad de suelo cercana a Mwuaobsra para representar
adecuadamente el caracter no acotado del mismestdemodo, lograremos que no se
aporten nuevos contornos que traten de cerrar rindm y que pudieran alterar la
respuesta del modelo. Por ello, y a modo de coidclusuando la importancia de la
estructura requiere gran exactitud en la obtendénlos resultados, el MEC es el

método numérico adecuado.

15 Descripcion de los contenidos.

Tras un primer capitulo en el cual realizaremos privaera aproximacion del
proyecto, en el capitulo Il se revisaran las earss que gobiernan el comportamiento
dinamico de los tres medios implicados en el modestas ecuaciones se consideran
una extension de la Elasticidad lineal, involucatal variable tiempo en el problema.
También se revisardn dichas ecuaciones en el dondeila frecuencia para los
diferentes medios implicados en el modelo de estuBinalmente se afrontara la
formulacién integral en el contorno tanto para ragdiiscoelasticos como para medios

escalares.

En el capitulo Ill abordaremos la aplicacion deltdd® de los Elementos de
Contorno sobre la formulacién integral expuest&lerapitulo I, llegando a plantearse
el sistema de ecuaciones que debera ser resueit@ipi@ner una solucién aproximada
al problema. En lo que se refiere a la parte fohel capitulo, abordaremos algunos
aspectos interesantes del MEC, como el tipo de esleon utilizado para la
discretizacion, el acoplamiento entre los diferemedios, el problema de esquina o la

aplicacion de las condiciones de contorno enti@sotr

Por lo que respecta al capitulo 1V, se introducieBnecuaciones que gobiernan
la propagacion de las ondas sismicas (Sh, Sv, Riyeigh) a través del medio,
teniéndose en cuenta que el tren de ondas pueithr idesde cualquier angulo de
incidencia sobre la estructura sometida a estuwisté ahora se habia tenido en cuenta
que las ondas se encontraban contenidas en un g&eoninado, sobre el cual se

tenian en cuenta diferentes valores del angulaaeéencia(f)).
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Finalmente, en el capitulo V se llevaran a cabopomeros estudios de los
problemas a analizar. Un primer problema sera ehpc@sto por una estructura
cilindrica semienterrada en el semiespacio, cuppgsito final sera el de comprobar
que la inclusién del nuevo angulo de inciden@@ en las ecuaciones de propagacion
ha sido correcta; y un segundo problema en el dumtaremos el estudio de una
estructura de contencion de aguas (presa), andtizas diferentes factores que puedan

influir en la respuesta de la estructura ante ¢@acade una solicitacion sismica.

Sera en el Ultimo apartado de este capitulo V, eldrademos balance de todos
los resultados obtenidos con el fin de extraeratonnumero de conclusiones posibles
de una manera clara y concisa. Asi mismo, se nérdas lineas de futuros desarrollos

gue puedan iniciarse a partir del trabajo de ingasion realizado.

2 Ecuaciones de la Elastodinamica

2.1 Introduccién

A lo largo del presente capitulo afrontaremos ead®llo de los conceptos
tedricos, los cuales nos permitiran obtener unacgm aproximada del problema que
se desea analizar. Del mismo modo, estos concépboisos servirAn como base de
programacion en la estructura interna del softwaitzado como herramienta de

trabajo.

En lo que a la primera parte de dicho capituloefene, desarrollaremos las
ecuaciones basicas de gobierno de los diferentdsgue intervienen en el problema,
caracterizando dichas ecuaciones tanto para elniontiel tiempo como para el
dominio de la frecuencia respectivamente. Como @atecdotico, decir que estas

ecuaciones representan una extension de la Elggtoadineal.

Por lo que respecta a la segunda parte del cap#eilafrontara el desarrollo de
la formulacion integral en el contorno para loedihtes medios que intervienen en el

problema.




Influencia de las caracteristicas de la excitaeibta respuesta sismica de una estructura

2.2 Propagacion de ondas en problemas escalares y eiéss.

Para poder entender de una manera precisa todeel@sie proyecto engloba,
deberemos comenzar explicando las ecuaciones gobierigan el comportamiento
dinamico de los medios implicados en el analissjecir, medios elasticos y escalares.
Por ello, iniciaremos el estudio realizando un breacorrido por las ecuaciones basicas
de la Elastodinamica Lineal, para posteriormentsticoar con las ecuaciones de
propagacion de ondas en cada uno de los mediosanados anteriormente.

2.2.1 Ecuaciones basicas de la ElastodinAmica Lineal.

Comenzaremos introduciendo las ecuaciones queetieéhcomportamiento en
régimen dinamico de un sdlido. Estas se conocenetarombre deecuaciones de

equilibrio internoa nivel diferencial, que escritas en notacidonndiices quedara como:
O-ij+Xi =pul (2.2)
Siendo:

* 0y, las componentes del tensor de tensidogs= d;;).
* X; fuerzas de volumen.

* p densidad del sdlido.

En segundo lugar analizaremos el tensor de pequefi@snaciones, encargado
de relacionar las deformaciones con las componelgiedesplazamiento en un punto
del sdlido considerado. Dichas ecuaciones esceitasiotacion de indices quedaran

1

En la expresion anterior denotaremosomo al vector desplazamiento en cada
punto del solidd). Este vector tendra tres componentes, cada uabadesegun los ejes
del sistema cartesiano fijo, respecto al cual defis la posicion del solido. Por otro
lado,x sera el vector de posicidon en cada punto del®édidpecto al sistema cartesiano

fijo. Dicho vector también constard de 3 compornente
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Finalmente, tenemos la ley de comportamiento delemah encargada de
relacionar las componentes del tensor de tensioomslas componentes del tensor
deformaciones. Para el caso que nos atafie; es @aca materiales homogéneos,
isétropos y con comportamiento elastico, la ecua@n notacion de indices quedara

expuesta de la siguiente manera:

1+v v
€ij = = 0ij — 7 Ok * i (2.3)

Donde:

» v coeficiente de Poisson.
« [ moddulo de elasticidad del material.

« §;; deltade Kronecke@’&ii =1lparai=j; é;=0parai ij).
No obstante, esta ecuacidén puede ser escrita @ foversa como sigue:
oj=A-e-8;;+2-pu-g; (2.4)
Siendo:

e Moddulo de rigidez transversgl

h=300 (2.5)
+ Constante de Lanié
__2pv
A= = (2.6)
+ Dilatacion volumétrica:
e = Skk (27)

En algunos casos puede resultar interesante izaotdn del médulo de rigidez
volumétrica o médulo de compresibilidad (k) coma e las constantes caracteristicas
del medio. Dicha constante representa la relaanbre éa presion y el cambio unitario
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de volumen provocado por ella misma. Establecenmasaauna relacion entre esta

constante y las anteriormente expuestas a travidssitpuiente expresion:

2 E
k=21+ 3 U= —3-(1—21)) (2.8)
Desarrollando la ley de comportamiento en cualquige las dos versiones
expuestas anteriormente, se obtendra un total eliéciones debido a la simetria del

tensor de tensiones y del tensor de deformaciones.

Si ahora consideramos todas las ecuaciones expuesi@ un problema
tridimensional, el resultado sera la obtencién desistema de 15 ecuaciones: seis de
ellas referidas al tensor de deformaciones, tremaones de equilibrio dindmico y
finalmente seis ecuaciones referidas a la ley depootamiento. A su vez,
dispondremos de 15 incognitas: tres componentesvelgior desplazamiento, seis
componentes del vector de tensiones y otras semparentes referidas al tensor de
deformaciones, todas ellas con dependencia espad@inporal. Considerando una
solicitacion genérica variable en el tiempo, elulieslo ya sea en desplazamientos,
tensiones o deformaciones seran ondas que se zmspa el interior del dominio

estudiado.

Debido a lo complicado que resultaria el manejadd5 ecuaciones de manera
conjunta, se procedera a la condensacion del m@neniendo como resultado un
sistema de 3 ecuaciones. Estas son conocidas esnesuaciones de Navier, las cuales

dependen de las componentes del vector desplazamiesi, tenemos que:
w-Vu+ A+ wvV-u+X=p-it (2.9)

Esta expresion ha de satisfacerse en todos loegpdat dominio en estudio para
cada instante de tiempo. La integracion de (2.9casio la obtencion del campo de
desplazamiento en el dominip requiere la imposicion de restricciones en etaoro
[' de Q en forma de tensiones y desplazamientos conociddsmas, se deberan
establecer condiciones iniciales &£& 0 para las tres componentes del desplazamiento

y la velocidad en cada punto del medio. Una vezocolo el campo de
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desplazamientos, tanto el tensor de deformacienés t) como el tensor de tensiones

o;;(x, t) son inmediatos mediante las relaciones matematicagradas hasta ahora.

En los proximos capitulos nos adentraremos con prafundidad en la
caracterizacion de estas ecuaciones para cadaeulns dnedios que intervienen en el

problema.

2.2.2 Propagacion de ondas en medios viscoelasticos.

A continuacion estudiaremos que caracteristicagrdele tener los fendmenos
de propagacion de ondas en un medio viscoelastiwopgéneo e isétropo. Se parte de
las ecuaciones de equilibrio dindmico en desplazatos (ecuaciones de Navier) y del
problema que representa su integracion teniendocwnta que las variables
fundamentales (componentes del desplazamiento)reserman acopladas. Debemos
acometer el desacoplamiento del sistema de ecwscioBn este sentido, los
procedimientos que permiten llevar a cabo dicheetolm parten de los trabajos de
Poisson, si bien es Stockes (1849) el primero gegepta una formulacion en términos
de la dilatacion volumétrica y el vector de rotacique permiten desacoplar las

ecuaciones de un modo sencillo:
e = &k — V-u (210)
w=VXu (2.11)

En funcion de estas dos variables, podemos expladaplaciana del vector

desplazamiento como:
V’Zu=Ve-VXxw (2.12)
Introduciendo esta ecuacion en (2.9), obtendreraes q
U-VXxw+A+2-u)Ve=p-it (2.13)

Aplicando ahora el operador divergencia y el rataai sobre (2.13) y, teniendo
en cuenta qu® - (VX w) =0 y V x (Ve) = 0 ademas de ser nula la divergencia del

vector rotacion, podemos obtener las siguientesesignes:
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1 ..
Vie = = é (2.14)
Vi = 0—12 - éd (2.15)
Donde:
,  A+2p
C =
p
p
U
CS2 = ;

Tanto (2.14) como (2.15) representan la versiomagdada de las ecuaciones
de Navier. Se tratan de ecuaciones de onda, lemigscalar y la segunda vectori@| (

y ¢, tienen dimensiones de velocidad).

De este modo, la primera de las expresiones seaasarambios de volumen,
propagandose con velocidag, mientras que la segunda expresion se asocia con
distorsiones en la forma, propagandose ésta cacidaldc,. Para el caso de un medio
homogéneo e isétropo infinito, ambas componentegis@n y se propagan de manera
independiente siendg, > c,, motivo por el cual se denomina a las ondas iciotales
ondas primariagondas P) y a las equivolumialesdas secundariandas S), puesto

gue las primeras alcanzan la estacion en menopdéielesde el epicentro del seismo.

Utilizando las velocidades de propagacion como ateristicas del medio, la

ecuacion (2.13) puede escribirse como:
—ciVXw+cjVe =i (2.16)

A partir de esta expresion, estudiaremos las aaiatitas del movimiento de
los puntos del sélido bajo el efecto de las ondagoniendo un problema de
propagacion plana armonica de caracter genériceelogidad c.
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El campo de desplazamientos en notacion complejanyamplitud unitaria,

puede expresarse como sigue:
u = ellwt-ksx) . g (2.17)
Siendo:

* w frecuencia angular.

* s vector unitario que determina la direccion deppgacion.

* k numero de ondé(;—)).

* x vector de posicién en cualquier punto del sélielgpecto al sistema
cartesiano de referencia.

* i unidad imaginaria.

e d vector unitario en la direccién del movimiento.

De este modo, si sustituimos (2.17), cada uno sl&éloninos de (2.16) seran:

Vxw=—k? sx(sxd):ellwt-ksx) (2.18)
Ve=—k?-(s-d)s-ellwt-ks) (2.19)
it = —w? - ei((u-t—k-s-x) .d (2.20)

Sustituyendo cada uno de los términos en la eco@g@obierno, tenemos que:

—c2-(—k? - sx(sxd)-el@tks0) 4 2. (—k2.(s-d)-s-e@thsD) = _2.

ei(w-t—k‘s‘x) .d (2.21)
Teniendo en cuenta que:

sX(sxd)=(s-d)-s
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La expresion quedara de la siguiente forma:
(c2—c)-d+(c2—c?)-(s-d)-s=0 (2.22)

Ahora trataremos de someter a estudio la ecua@d@odierno para los casos en
los que la solicitacion sismica sea una onda P a anda S. Para el primer caso,
tenemos que la velocidad segapor lo cual procederemos a sustituir en (2.22)pkdr

de la velocidad para una onda genérica por el donda RCp).

Para estas circunstancias, la ecuacion solamentrifieara cuands = +d; es
decir, para el caso en el que la propagacién dada y el movimiento tengan la misma
direccion. Por ello, para el caso que nos atafiareesbs hablando de una onda

longitudinal (onda P). La direccién de los vect®egsd se indica en la siguiente figura:

/ﬁ. o

/ -
r"
.—f_'_"_’
Xz \ "'! {/‘%
) )\ -
/"/Xz ,
/;l \/’/

Figura 2.1. Desplazamiento y direccién de propagaddndas planas P

Para el segundo caso, se considera que la ondadl#er genérico es ahora una
onda S. En tal caso, sustituiremos la velocidadmpagacion genéricéc) por la
velocidad de propagacion de la ondd ). Para estas circunstancias concretas, la
ecuacion de gobierno se cumple sol@ssid) - s = 0; esto requerira que la direccion
de propagacion de la onda y la direccion del maetma sean perpendiculares. Por ello,
estaremos hablando de ondas transversales (ondha 8iyeccion de ambos vectores

(s y d) para una onda S queda representada a travésideitnte figura:
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X1

Figura 2.2. Desplazamiento y direccién de propagaddndas planas S

A lo largo de este apartado hemos tratado de mamena esencial las
ecuaciones que gobiernan el comportamiento deota@ss sismicas en un medio
viscoelastico. Para tratar de un modo mas profuadteoria de la Elastodinamica,
consultar Achenbach (1973) y Eringen-Suhubi (1975).

2.2.3 Ondas de presién en fluidos.

A lo largo de este capitulo introduciremos las emrees que gobiernan el
comportamiento dinamico de un medio fluido. Pala, élataremos dicho medio (agua)
como un fluido compresible, no viscoso (fluido petb), adoptando un
comportamiento elastico y lineal que trabaja emamgo de pequefias perturbaciones.

Un dato a tener en cuenta es el hecho de que kosidisidos tienen viscosidad
distinta de cero. No obstante, al variar ésta epliammargenes para diferentes fluidos
podemos considerar que dicha viscosidad sea désgaesin que se produzca pérdida
de exactitud en los resultados. De este modo, parta fluida del problema sometido a
estudio, los efectos inerciales seran predominastbge los viscosos. Ademas, no se
tendran en cuenta los efectos provocados por tmbigs. Un fluido perfecto (no
ViSC0S0) no es capaz de soportar tensiones tamdesidio que conlleva a que el tensor

de tensiones se reduzca a su componente esférica.
Oij = _pal] (2.23)

Donde puede observarse que el signo negativo ingiadension de compresion

para un valor positivo de la presion.
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La ley de comportamiento para un fluido perfecteeqe plantearse de la

siguiente manera:
011 =022 =033 =—p=Ks-¢€ (2.24)
012 =013 =023 =0 (2.25)
Donde:

* Ky modulo de compresibilidad del fluido, el cual egenta la relacion
entre la presion y el cambio unitario de volumewvpcado por ésta.

+ ¢ dilatacion volumétrica del fluido.

Recordemos que para medios viscoelasticos tenidraescomponentes del
vector tensién para cada punto analizado. Parasel gue nos atafie (medio fluido), en
cada punto tendremos un valor de la presion, deongoe conociendo el valor de la

misma, sera inmediata la obtencion de las tres oosrges del tensor de tensiones.

Por otro lado, considerandd (x,t) como el desplazamiento de un punto del

fluido, la dilatacién volumétrica vendra dada por:
E=Ekp = Ui,i (2.26)

Las tres ecuaciones de equilibrio interno que mabs$adefinido para un medio
viscoelastico, se convertiran en una Unica ecuap#ara el caso de un medio fluido
debido a que las componentes tangenciales delrtdasensiones son nulas, asi como
las tres componentes normales idénticas. Por tpaia, un fluido perfecto podemos

escribir la ecuacién de equilibrio interno dinamiaby como sigue:
Vp=p-i (2.27)

La ecuacion (2.27) nos serd de gran utilidad a dea hde establecer las
condiciones de contorno en las interfases entrardorfluido y elastico (contornos de
interfase suelo-estructura o agua-estructura).dua@on anterior puede ser expresada

en funcion de la dilatacion volumétrica:
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Ki-Ve=p-u (2.28)

Aplicando los operadores divergencia y rotaciorddrs la ecuacion anterior,

obtendremos la ecuacién de onda que gobierna fmg@agion de una onda en el fluido:
Vie==¢ (2.29)

VxU=0 (2.30)

Puede verse como para el caso un fluido, tratasema Unica ecuacion de onda
(escalar). Para el caso de medios viscoelastibdgyimos dos ecuaciones de onda (una
escalar y otra vectorial) en donde la ecuacionovedtera la encargada de gobernar la
componente rotacional de la onda. Asi, tenemosegtee componente no se propaga
para el caso de un fluido perfecto, siendo Unicaendm dilatacion volumétrica la
encargada de gobernar el movimiento del fluido.d®ar lado, definiremos la velocidad
de la onda, la cual coincidira con la velocidagd®pagacion de una onda longitudinal:

K
c2=-L (2.31)

Lo expuesto anteriormente nos lleva a concluir tpge ondas transversales

(ondas S) no se propagan a través del fluido.

En términos de la presion, definimos la ecuaciooriia tal y como sigue:
V2p = 1 ..
p==D (2.32)

Ecuacion que sera utilizada en adelante para eazat el comportamiento

dinamico de un fluido perfecto, lineal y elasticonetido a pequefias perturbaciones.

2.3 Ecuaciones de gobierno en el dominio de la frecuaac

Hasta ahora se han tratado las ecuaciones de golpara los diferentes medios
que intervienen en el problema, considerando lashlas con dependencia espacial y

temporal.
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No obstante, conviene tener en consideracion elpodamiento dinamico de
estos medios, debido a la simplificacion matematjoa sufren las ecuaciones de
gobierno al ser expresadas en el dominio de laid¢rezia. También este planteamiento
conlleva a simplificaciones en los procedimientm@n{putacionales) para la obtencion

de soluciones al problema.

En cualquier caso, podremos plantear cualquier rikgrecia temporal de la
variable como una superposicion de armonicos azatife frecuencia de acuerdo a los

planteamientos de Fourier.

Comenzaremos estudiando el problema elastodinami®ara ello,
consideraremos el desplazamiento en un pxrftmn dependencia temporal y espacial)

expresado en funcion de la frecuencia angular
u(x,t) = ulx,w) - et (2.33)

Dondeu(x, w) es un vector de componentes complejas en donaédillo de
las variables complejas en el dominio de la frecizerepresenta el valor maximo que
adopta esa variable en el dominio del tiempo, masngue la relacion entre las partes

real e imaginaria representa el desfase.

Esta expresion llevada a las ecuaciones de Nawensiderando que las fuerzas
de volumen también sean armdnicas, nos conduceeaukcion reducida de Navier.
Esta presenta mucha similitud con la ecuacion ralgipero con las variables

dependiendo de la posicidn y la frecuencia. A ers que:
u-Vi-u+A+uwve+ X =—p-w?-it (2.34)

Llegados a este punto, puede tenerse en cuentarddter viscoelastico del
medio (disipativo) el cual vendra dado por:

1 = Re[u] - (1 + 2i) (2.35)

Donde§ puede entenderse de la misma forma que el faetantrtiguamiento

para sistemas de un grado de libertad.
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Por otro lado, la variable fundamental para urdfiuperfecto (la presion) puede

expresarse en régimen armoénico como:
p(x,t) = p(x, ) - e'* (2.36)
Expresion que permite escribir la ecuacion reducidauacion de Helmholtz:
Vip+k?-p=0 (2.37)
Donde:

o k= % es el nimero de onda.

Utilizando como variable primaria la presion, larigble derivada esta
relacionada con el desplazamiento de las partidéa$luido (U;) a través de (2.28).
Asi, en puntos del contorno y en la direccion ma@aqaor la normal al mismo, tenemos
que:

P=pew? U, (2.38)

on

SiendoU,, el desplazamiento normal al contorno de las pdascdel fluido.

2.4 Formulacién integral del problema.

El objetivo fundamental de este apartado sera eblitener la formulacion
integral en el contorno para los diferentes medimglicados. Posteriormente, dicha
formulacién nos sera de utilidad para poder obteadravés de la aplicacién de un

método numeérico, una solucion aproximada del proalen cuestion.

2.4.1 Formulacion integral para el problema viscoelasticd&oluciéon

fundamental armonica.

Inicialmente, partiremos del teorema de recipratid&heeler y Sternberg
(1968) que constituye una extension del teoremaedprocidad de Betty para la

elastoestatica.
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Plantearemos la formulacion sobre el dom@iodelimitado por el contornb.
La densidad del medio se denotara medipntdas velocidades de propagacion de las

ondas primarias y secundarias a traves del mismo,poc, respectivamente.

Ahora se definiran dos estados elastodinamicosarientes aplicados sobre
el dominio considerado. Estos dos estados debati&faser las ecuaciones de gobierno

del medio analizadas en el apartado anterior.t&sémos que:
Primer estado elastodinamicds, quedara definido por las siguientes variables:

* u(x,t) Vector desplazamiento con dependencia espacéhdral.
e t(x,t) Vector tension con dependencia espacial y terhpora

* f(x,t) Fuerzas de volumen con dependencia espacialpotam

Segundo estado elastodinamicas™, quedara definido por las siguientes

variables:

* u*(x,t) Vector desplazamiento con dependencia espacihgdral.
* t*(x,t) Vectortensién con dependencia espacial y terhpora

* f*(x,t) Fuerzas de volumen con dependencia espacialpotam

Estos dos estados elastodinAmicos independientesdngs sobre el mismo
dominio Q pueden relacionarse por medio de una formulacitegral, el teorema de

reciprocidad. Por ello, y para el caso de cond&saniciales nulas, tenemos que:
fr(t *u*)dl + p fQ(f *u*)dQ = fr(t* xu)dl+p fQ(f* xu)dQ  (2.39)

Donde el operador * entre vectores representa laasdel producto de

convolucién de sus componentes.

El siguiente paso sera desarrollar la formulacidgraiir del supuesto en el que
las fuerzas de volumen y las condiciones de coateean armonicas en el tiempo, lo
cual sera considerado de vital importancia. Pdm ks variables fundamentales del
problema seran expresadas en funcién de la fremuangular. Comenzando por las

fuerzas de volumen, diremos que:
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fx0) = fx,w) - et (2.40)
Donde:

* o: frecuencia angular.

e i: unidad imaginaria.

Del mismo modo, pueden escribirse las fuerzas digmen en funcién de la

frecuencia angular para el segundo estado elagimitinS*.
Para el desplazamiento, la expresion afiade un riéewo:
u(x, t) = ul(x,t) + u(x, w) - et (2.41)

Donde el primer término del segundo miembro repitaska parte transitoria de
la respuesta. Es usual considerar que ésta desap@amscurrida un cierto tiempo
debido a los mecanismos internos de disipacionngggéa que presentan todos los
sistemas fisicos, quedando Unicamente la partegmemme de la respuesta. Al igual que
sucede con las fuerzas de volumen, ésta puedsa@agara los desplazamientos del

segundo estado elastodindmio

Finalmente, tenemos la expresion para la tensiofuecion de la frecuencia

angular:
t(x,t) = t(x,w) - e't (2.42)
Expresion que también sera aplicada al segunddcestastodinamic6™.

Asi pues resulta conveniente definir dos nuevamlestsobre el mismo dominio
Q, en los que las variables dependan de la posyctlnla frecuencia angular. Por tanto,
formularemos el problema en el dominio de la freciee Llamaremos a estos dos
nuevos estados elastodinAmiastados reducidesespecificando la notacion para las

variables fundamentales a continuacion:
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Primer estado elastodinamico reducidds,,, el cual quedara definido por las

siguientes variables:

* u(x,w) Vector desplazamiento con dependencia de la gosicide la
frecuencia angular.

* t(x,w) Vector tension con dependencia de la posicion ka deecuencia
angular.

* f(x,w) Fuerzas de volumen con dependencia de la posicida la

frecuencia angular.

Segundo estado elastodindmico reducid$y,, el cual quedara definido por las

siguientes variables:

 u'(x,w) Vector desplazamiento con dependencia de la gosicide la
frecuencia angular.

* t'(x,w) Vector tensibn con dependencia de la posiciéon ylae
frecuencia angular.

* f"(x,w) Fuerzas de volumen con dependencia de la posicide la

frecuencia angular.

Aplicando el teorema de reciprocidad en el domigie la frecuencia,
obtendremos una expresion muy similar que parastedos iniciales con la salvedad
de que se han eliminado los productos de convalusidre los vectores. Asi, tenemos

que:
Jo@&-u)dr +p [ (f-u)da= [t -wdl +p [ (f-u)d2 (243

El teorema de reciprocidad ha sido aplicado ertestado elastodinamico que

se pretende resolver y otro convenientemente edealgil cual se conoce la solucion.

El siguiente paso sera conocer la solucion detlestiastodinamico en cuestion.
Para ello, plantearemos un estado elastodinamiiico determinado por una fuerza
masica excitadora concentrada en un punto. Dictamleslastodindmico se le conoce
como elestado elastodinamico de Stockgda solucion para dicho estado tanto en el

campo de desplazamientos como en el de tensionesorsgce comosolucion
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fundamental La fuerza masica concentrada en el puhtoesponde a la siguiente

expresion:
Fr(x,t) =6(§)-e®te (2.44)
Donde:

e 6(&) funcién impulso o delta de Dirac.

e e vector unitario en la direccion de aplicacion aéuerza.

Sustituyendo la fuerza excitadora aplicada sobreualto & en la expresion

(2.43) se tiene que:
u(é) = fr(t-u*) dr — fr(t* ~u)drl +f9p(f-u*) dQ (2.45)
Donde:

o u(é) representa el desplazamiento en el punto dondeorseentra la
fuerza excitadora.

* u’ representa el desplazamiento correspondiente adleeseducido de
Stockes.

* t" representa la tension correspondiente al estadeickrlde Stockes.

u y t representan los campos de desplazamiento y tedsidoprimer estado
elastodindmico, el cual se trata del problema cqu@rstende resolver a partir de la

formulacién planteada.

A partir de ahora prescindiremos del ultimo térmil@ola ecuacion anterior por
considerar nulas las fuerzas de volumen del prest&do reducido. Esto conlleva a que
la expresion quede planteada en el contdrdel dominioQ.

Acometeremos ahora la deduccion de las expresiatds campo de
desplazamiento y tensiones que dan solucidon allggr@b reducido de Stockes; las
expresiones para la solucién fundamental. Estagdamue cumplir las ecuaciones de
gobierno del medio sobre el que se aplique el estadiucido (en este caso

viscoelastico).




Influencia de las caracteristicas de la excitaeibta respuesta sismica de una estructura

Haciendo un poco de memoria, fue Stockes (1849rielero en deducir la
solucién fundamental para problemas en el domieldidmpo; posteriormente, fueron
Cruse y Rizzo (1968) quienes obtuvieron la solugara el estado reducido a partir de
la solucion obtenida por Doyle (1966). No obstaeteeste proyecto nos centraremos
en las expresiones de la solucién al campo de aempiento y tension del estado

reducido, obviando el proceso de deduccion de dieRpresiones.

Asi, comenzaremos con la solucién fundamental spldeamientos. Partiendo
de un punto que dista r del punto de aplicaciotadmarga, el desplazamiento en la

direccion k para una carga | vendra dado por:

(2.46)

Siendo:

* a = 4 en problemas tridimensionales.

Donde:
7 L *wW-*T
s = CS
iw-r
Z,=—

La componenté del vector tension sobre una superficie cuya nouméhria
exterior ey viene dada por:
= L[ _x). (5.2 P R LA B 3. 4
le T oam (6r r) ((Skl on + Tk m) rX(nk T 2 Tk T 67]) or
k1 l-0rdp+cples2—2-MN Or—adyor—alrr,lnk
(2.47)
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Ahora plantearemos la formulacion integral obterada(2.45) en funcion de la
notacion de indices utilizada para la solucion &mental. Esto puede resultar mas
esclarecedor a la hora de pensar en las direcciansde aplicacion de la fuerza como

del resto de variables del problema. Por tantexpaesion quedara:
Ca(§) - w(§) = [L(Uye - tie — Ty  wye) AT (2.48)

Siendo:

u; (&) desplazamiento del estado de solucién desconasidel, punto de
aplicacion de la carga del estado reducido de 8&degun la direccion
de aplicacion de esta fuerza.

* Uy solucion fundamental en desplazamiento.

* Ty solucién fundamental en tensiones.

e (1 (&) coeficiente que tendra un valor segun el puntel gue se sitle la
carga en el estado reducido de Stockes:

e (&) =0, si el punto de aplicacion de la carga es un purio
contenido en el dominio sobre el que se estudiam dstados
elastodinamicos.

o (&) = 6y, si el punto de aplicacion de la carga es un pooidenido

en el dominio sobre el que se estudian los esdstodinamicos.

No obstante, para poder obtener una formulaciéprddllema en el contorno, la
carga del problema reducido de Stockes debe agdican puntos pertenecientes al
mismo. Situandonos en dicho caso, y mas concretareerias integrales de contorno y

en el punto de aplicacion de la carga, los intedpanno quedaran correctamente
- ., , . 1 1
definidos puesto que la solucion fundamental ptasgrminos en; y - Cuando el

punto sobre el que se integra coincide con el puaetoaplicacion de la carga, la

distancia entre ellos es nula presentandose ugalaiidad.

Para poder solventar dicha peculiaridad, recuroe@ un proceso de paso al
limite. Dicho procedimiento consiste en sustitdircentornol” por la unién de dos

contornosT — I, y I, siendo éste una porcién de esfera de raeio0 (ver figura).
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Figura 2.3. Igualdad integral en el contorno

Tomando limites en las integrales a lo largd'dese tiene que:

limg_)o fFE Ulk <ty dl"g =0 (2.49)

limg_o frg Ti - ug Al = dyge (§) - uge (§) (2.50)

Donded,;, es una constante cuyo valor depende de la geangetricontorno en

el punto de aplicacién de la calgéDominguez 1989).

Por tanto, y una vez resuelto el tema de la siniglald en el contorno, podemos
concluir que la expresion de la formulacion intégara puntos del contorno responde

a
Cra(®) - wi(®) + [ Tu - wye dT = LUy - i dT (2.51)
Donde:

Cru(§) =1+ dy

Las integrales deben entenderse aplicadas a tanmtgrno excepto al punto de

aplicacién de la carga (en el sentido del valangipal de Cauchy).
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La expresion obtenida en (2.51), junto con las wimides de contorno de un
estado elastodinamico reducido concreto, conformaolmulacién cerrada en el
contorno, la cual se utiliza para obtener los @Gsphientos y tensiones desconocidos

en el contornd’ del dominioQ analizado.

Por otro lado, se presenta el problema de quetehebuna solucion analitica
para casos generales resulta imposible. Es por @mhio lo que se recurre al
planteamiento numérico de la expresion integraabdose en la aplicacion del Método

de los Elementos de Contorno, el cual estudiaremgsdximos apartados.

2.4.2 Formulacion integral para el problema escalar. Swén fundamental

armonica.

El objetivo principal de este apartado sera elltereer una formulacién integral
en el contorno para problemas escalares. En esteseaestudiara el dominfd de un

medio escalar, delimitado por el contoino

Al igual que ocurriese para el caso del medio \@kxsiico, vamos a considerar
dos estados dinamicos independientes aplicadog sblmtominio sometido a estudio.
Para este caso, las variables fundamentales de estddo seran la presién y su
derivada. Conviene recordar la ecuacion de ondardenedio escalar obtenida en

apartados anteriores:

L.
Vip = 5P

Debemos de recordar que en medios escalares stéaseepropagan las ondas
longitudinales o principales (ondas P), lo que lewal a quec sea la velocidad de

propagacion de este tipo de ondas a través debmedi

Un estado dinamico vendra determinado por sus blasafundamentales. La
presiéon en funcion de la frecuencia angular de stade cualquiera puede escribirse

como.

p(x,t) = p(x, w) - €™t (2.52)
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Expresando la ecuacion de onda de un medio esenlael dominio de la

frecuencia tenemos que:

w?

Vip+—=-p=0 (2.53)

c2

A continuacién consideraremos dos estados dinamezhscidos en los que las
variables tendran dependencia espacial y frecdenaiapartir de dos estados
elastodinamicos con variables dependientes dedmipo y el tiempo. Seguidamente,

pasamos a definir ambos estados reducidos:

Primer estado dinamico reducido S¢,, definido a través de las siguientes

variables:

 p(x,w) presidbn con dependencia de la posicién y de lauémrcia
angular.

. Z—Z(x, w) gradiente de presién con dependencia de la pasicide la

frecuencia angular.

Segundo estado dindmico reducids?,-, definido a través de las siguientes

variables:

 p(x,w) presidbn con dependencia de la posicién y de lauémecia

angular.
. Z—Z(x, w) gradiente de presién con dependencia de la pasicide la

frecuencia angular.

Para poder relacionar estos dos estados reduciddegeper una formulaciéon
integral en el contorno, partiremos del segundcetea de Green, el cual establece que:
2 — . (V2p) ) d = [ (p*- 2 —p. (22
JoVPp-p"—p- (V?p))da = [ (p 3 (an) )dF (2.54)
El segundo estado se corresponde a una fuerzacdac#dn concentrada en un

puntoi del dominio, de modo que la presién y su gradiseteorresponderan con la

solucion fundamental y verificaran la ecuacion deigrno.
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De manera analoga al caso del medio viscoelastolimitaremos a exponer la

solucion fundamental para un medio escalar.

Asi, la presion en un punto que distadel punto de aplicacion de la fuerza

vendra dado por:

(2.55)

a_P)*_i. S S B
(67] T am ( T r2> €c an (2.56)

Por otro lado, expresamos la ecuacién de gobiemceledominio de la

frecuencia aplicada al estado reducido de Stotkesial se escribe como:
wz i
(Vp)* + P p*+6'=0 (2.57)
Introduciendo esta expresion en (2.54), tenemos que

fQ(Vzp-p*+p-Z)—22-p*+p-5i)dﬂ=fr(p*-g—:;—p-(g—z)*)dl‘ (2.58)

Reagrupando términos en el primer miembro:

L (vp+p-L)+p-6)da=f (- Z-p-(Z))ar  @s9

Donde puede verse que el término entre paréntesidadl?® integral se
corresponde con la ecuacidon de gobierno en el dordmla frecuencia (2.53), la cual

es igual a cero. Por tanto, se tiene que:

v+ [ (p (Z))ar = [ (v S2)ar (2.60)

Por todos es sabido el hecho de que para que tmal&zion en el contorno sea
viable es necesario que los puntos de aplicacioladearga pertenezcan a dicho

contorno. En este caso, y al igual que sucediera j[ps medios viscoelasticos, se
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presenta un problema de singularidad en los imelgsade las integrales extendidas al
contorno (cuando el punto donde se integra coinmeel punto en el que se concentra
la carga).

Debemos extraer dicha singularidad. Para ello,gat@emos de la misma forma
que para los casos anteriores; es decir, medianf@aceso de paso al limite se tiene

que:

. . 0
lim,_, fre (p -ﬁ) dr, =0 (2.61)

lime_o fy, (p+ (2) ) dre = du(®) - 1, () 2.62)

A través de dicho procedimiento podemos rescribiexpresion integral en el

contorno de la siguiente manera:
;g ap\* . 0
ct-pt+ [ (p : (6—2) )dF = I (p -ﬁ) ar (2.63)

En cuya expresion, las integrales se entenderah santido del valor principal

de Cauchy.

Como puede verse, se trata de una expresion analdgaobtenida para un
medio viscoelastico. Sobre dichas expresionesaplicos el Método de los Elementos
de Contorno, lo cual nos llevara a un sistema daaanes algebraicas cuya resolucion

nos facilitara la solucién aproximada al problema.

A modo de resumen, se ha obtenido la formulacitegmal en el contorno tanto
para el problema viscoelastico como para el problesscalar. No obstante, la
formulacién obtenida no sera aplicable desde etgpde vista de tratar de obtener una
solucién analitica del problema; por tanto, seréesaria la utilizacion de un método
numerico que nos permita obtener una solucién apaa del problema. La aplicacion
de dicho método numérico, asi como los aspectosgukeva seran abordados en el

siguiente capitulo.
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3 El Método de los Elementos de Contorno

3.1 Introduccion.

A lo largo del anterior capitulo hemos deducidotrenotras cosas, la
formulacién integral en el contorno, observandoge dicha formulacién no presenta
una solucion analitica de garantias. Es por elle,an el presente capitulo se ha tratado
de desarrollar una metodologia que permita obtemer solucion aproximada al

problema. Dicha metodologia constituydvitodo de los Elementos de Contarno

El objetivo de dicho procedimiento radica en llegasn sistema de ecuaciones
algebraicas en el que las incognitas sean tensiodesplazamientos en los puntos del

contorno de la region que se desee estudiar.

A modo de resumir todo lo que vayamos a explicar daho capitulo,
comenzaremos describiendo la aplicacion del MEQurmmedio viscoelastico, para
después continuar con la formulacién del métodaummmedio escalar. Finalmente,

recordaremos algunas peculiaridades del métodonzoven cuestion.

3.2 Aplicacion del Método de Elementos de Contorno (MEL en un

medio viscoelastico.

La primera de las condiciones que exige la aplicade este método numeérico,
radica en la discretizacion de los contornos dalifesentes medios que conforman el
dominio en elementos. Dichos elementos, a su \staran formados por una serie de

nodos.

Por ello, consideremos el dominip delimitado por el contornb discretizado

en un nimero de elementos (NE). Se denominaraealegito genérico par;. Asi,

partiremos del siguiente grafico inicial:
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Figura 3.1. Dominid" discretizado en elementgs

A modo de tratar de conocer el valor de las vaembtn cada elemento,
recurriremos a una serie de funciones de interfiplaancargadas de aproximar el valor

de las variables en los nodos que forman parteleeiento.

Por lo que respecta a la geometria del contorre elemento, también ésta sera
aproximada a partir de la posicién de los nodoscgoneponen el elemento.

Asi, tenemos que para un elemento gendricel desplazamiento en un punto

perteneciente a dicho elemento viene dado por:
u=ao-u (3.1)
Donde:

* u vector que contiene las tres componentes del velesplazamiento
segun los tres ejes cartesian@dg, X,, X3) en un punto cualquiera del
elementd;.

« w/ vector que contiene las tres componentes del velesplazamiento
segun los tres ejes cartesiar{ds, X,, X3;) para cada uno de los nodos
que componen el elemenfp La dimension de este vector sera de tres
veces el nimero de nodos que componen el elemento.

« & matriz que contiene las funciones de interpolacémcargadas de

aproximar el valor de la variable de un punto cuigica a partir del valor
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de la propia variable en los nodos que definenleshento. La matriz
consta de tres filas, una por cada componente d#ariable segun los
ejes coordenados, y un numero de columnas quetsyaveces el

numero de nodos que conforman el eleménto

¢ 0 0 ¢, 0 0 ¢ 0 0
d=(0 ¢ 0 0 ¢, 0 0 ¢, O
0 0 ¢ 0 0 ¢ 0 0 ¢,

Siendog el nimero de nodos del elemefito

Del mismo modo se procede con el vector tensidyg expresion para un punto

interior al elemento genérico viene dado por:
t=d -t/ (3.2)

En cuyo caso los términos de la expresion tendréninterpretacion similar a

los de la expresién deducida para el desplazamiento

En dltimo lugar, la posicién de un punto interidreiemento genéricd; se

aproximaré de la misma forma que el vector tengiéhvector desplazamiento:
x=® x/ (3.3)

A modo de recordatorio, vamos a introducir la folawion integral en el
contorno para un medio viscoelastico deducida eagltulo anterior. Asi, si aplicamos
una carga en un puntadel contorno en el estado reducido de Stockesndbemos la

siguiente expresion:
ch-ul + [ -u)dl = [ (t-u")dl (3.4)

Aplicando esta expresion al contorno discretizda® integrales en el contorno
se transforman en sumatorios de integrales extasdiccada elemenib. En lo que se
refiere a los sumatorios, éstos recorreran todogllementos en los que se discretiza el

contorno:
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ctout + XY {fr,-(t* - D) dF]} -ul =YNE {frj(u* - ®) d[}} -t (3.5)

Donde las variables del problema en el interiorcdda elementd; se han
sustituido por su expresion aproximada a partivd&r en los nodos. La resolucién de
estas integrales se estudiara en apartados posserfRor ahora, nos bastara con asumir
que la resoluciéon de las mismas dara lugar a utiaznale coeficientes que multiplicara
al valor de la variable en los nodos que formanepael elemento, los cuales seran las
incognitas del problema. Resaltar que un mismo ruatira formar parte de varios
elementos.

Si ahora desarrollasemos los sumatorios de la sx¥prey agrupamos los
términos que multiplican a la tensiébn o al desptaeato para un mismo nodo,

podremos rescribir la ecuacion anterior de la sigta forma:
chut + NN A ut = FRN Gt (3.6)
Donde los términos de las matridé®€ y G pueden escribirse como:
H™ =% [l T* - ¢q dT; (3.7)
G =% [, U ¢qdl; (3.8)

Donde los sumatorios se extienden a toslementos a los que el noao

pertenezcag es la numeracion local del nodo en el elemento.

Como ha sucedido en ocasiones anteriores, lo quiesea es llegar a una
expresion algebraica lo mas compacta y simplifiqgaaisible; por ello, vamos a definir

una nueva matriél®, tal que:
H"=H" si i#n (3.9)

Hr=H"4+clsii=n (3.10)
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A partir de la nueva definicién d&" podemos agrupar el primer miembro de la

ecuacion en:
ﬁgl Hln * un = ﬁgl Gln M tn (311)

La expresion anterior, para el caso especificd gaeel nodo pertenezca a una
discretizacion cualquiera, dara lugar a tres eoumas algebraicas. Si esto se produce
para losn nodos de la discretizacion del contorno, obtendeemn sistema de 3n

ecuaciones algebraicas, el cual podra escribins®rco
H-u=G-t (3.12)

Sera en este sistema de ecuaciones donde se oitéwdlas condiciones de
contorno. La resolucién del problema en el contpinplicara la obtencion de las
matricesH y G, asi como la resolucion de un sistema de ecuaiafgebraicas,

guedando el problema totalmente planteado.

3.3 Aplicacion del Método de Elementos de Contorno (MEL en un

medio escalar.

Volvemos a partir de la situacion anterior, considdo un dominio cualquiera
Q de un medio escalar, delimitado por el contdrng discretizado éste en un total de

NE. Llamaremod; a un elemento genérico. Finalmente, cada elenestéra formado

por un determinado nimero de nodos que dependetipalde elemento usado.

Para este tipo de problemas concretos, las vasidbledamentales seran la
presion y el flujo. Estas se aproximaran mediamteibnes de interpolacion a partir del
valor de la variable en los nodos de cada elemeéatpresion en un punto del elemento

[; se aproximara como:

p=a®-pl (3.13)
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Donde:

« p/ vector que contiene el valor de la variable enrlodos que forman
parte del elementd.

e @ vector de funciones de aproximaciéon o funcionefodua:

P = [¢1; 0B} ---¢q]
Siendog el ultimo nodo que forma parte del elemehto

El flujo en un punto del contorno se aproxima d®faa:

(3.14)

a ap|!
_p—q)._p|
an on

Por lo que se refiere a la geometria del contotambién ésta se aproximara
mediante las funciones de forma. La posicion dpunto del interior del elemenip en

funcién de la posicion de los nodos que conformelnadelemento es:
x=® x/ (3.15)
Donde:

¢, 0 0 ¢, 0 0 ¢ 0 O
=0 ¢, 0 0 ¢, 0. 0 ¢, O
0 0 ¢, 0 0 ¢, 0 0 ¢,

Conviene ahora recordar la expresion de la fornmuaimtegral en el contorno
para medios escalares deducida en capitulos aeterio

ct-pt+ [ (p : (Z—z)*) dr = [ (p* -3—2) dr (3.16)

Dondei es un punto perteneciente al contorno sobre élseuaplicara la carga.
Al discretizar el contorno en elementos, las irdabgg se convierten en sumatorios a lo
largo de todos los elementos extendidas a cadaeetios. Las variables en el interior

del elemento se sustituyen por su valor aproximiéegandose a:
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cp 5 {0 2] o]an)e = s (- elan}2 e

Se pueden agrupar los términos que multiplican\ateble correspondiente a

un mismo nodo, teniéndose que:

i i —~ . ap|™
¢l pt+ TN A pt = S, G 2 3.19)

Donde puede verse que los sumatorios se extiend®dos los nodos que
forman parte del contorno discretizado. Por otdwo Jdos términos de las matricB§* y

G™ pueden escribirse como:
—~ anl*
H'™ = thrjﬁl * ¢gq dT; (3.19)
G™" = Zelp,p" e ¢q dT; (3.20)

Como puede observarse, el proceso es idénticogaidee para el caso de un

medio viscoelastico. A continuacion, definimos latriz H™, tal que:
H™=H" si i#n
Hr=H"+clsii=n

Particularizando (3.18) para cada uno de los npddenecientes al contorno, de
modo que se trate de hacer variar el nodo de apitale la carga a cada uno de los
nodos del contorno, obtendremos un sistema de iecgacalgebraicas igual al nimero
de nodos. Este sistema puede escribirse como:

—c.r
H-p=G o (3.21)

Ahora trataremos de expresar (3.21) en funcion ndeVimiento normal al

contorno, teniéndose que:

a—pz -wz.w
an p
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Siendo:

* w el movimiento normal al contorno.
* w lafrecuencia angular.

* p ladensidad del medio escalar considerado.

Esto implicara que definamos una nueva mattz= G - p - w?, por lo que la

ecuacion (3.21) quedara de la siguiente manera:
H-p=G"-w (3.22)

La aplicacion de las condiciones de contorno pada¢odo, las cuales podran
ser el valor de la presion en dicho punto o depldeamiento normal en el mismo, nos

conducira a un sistema de N ecuaciones con N iftaégn

3.4 Acoplamiento entre regiones.

Tras haber obtenido la formulacién del MEC tanteapaedios viscoelasticos
como para medios escalares, estudiaremos el modacdplamiento de ambas
formulaciones en un contorno que sea interfasee dagr dominios de los diferentes
medios analizados, ya sea viscoelastico-viscoetastiscalar-escalar o viscoelastico-

escalar.
Para ello se tendran en cuenta dos domi@jog Q,, asi como tres contornos:

* [ que delimita al domini€;.
» T3, que es el contorno de interfase entre ambos dosini

* [ que delimita al domini@y,.
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Figura 3.2. Contorno interfase entre dos dominios.
3.4.1 Interfase viscoeléstico-viscoelastico.

Para llevar a cabo dicho estudio, hemos de comsider ejemplo que nos sirva

de aplicacion. En este caso, recurriremos a urooomide interfase entre una estructura

de contencién de aguas (presa) y el suelo solopgeesde sitla dicha estructura.

Desarrollando el sistema de ecuaciones correspuedi@e cada dominio, se

puede escribir para cada uno que:
Hi-ul +H}-ul=Gl-t{ +G; - t3 (3.23)
HZ -ué + HZ -ub = G2 - t2 + G2 - t2 (3.24)
Expresiones donde los subindices hacen referenkiacoatorno y los
superindices al dominio.

Cabe reseiiar que entre ambos dominios deben ceenpdis ecuaciones de
compatibilidad y equilibrio en el contorno de irfiéese, que se expresan como:
Compatibilidad de los vectores desplazamiento:
I=u2 (3.25)

U = Uz = Up

Equilibrio entre los vectores tension:

ti=—ts=t, (3.26)
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Aplicando lo anterior, podemos escribir un sistetfeacuaciones global:

1 1 u} 1 1 t%
[H1 Hy 0 l N | = [Gl G, O l e, (3.27)
0 sz HS? u% 0 Gzz G§ tg

3.4.2 Interfase escalar-escalar.
Para este caso en concref, y Q, seran medios escalares. Desarrollando el
sistema de ecuaciones correspondiente a cada @omini

Hl -pl + H} -pl =Gl -wi+Gh-wi+Gh-wi (3.28)

HZ -p>+ HZ-p% =Gs-w?+ G2 -w3 (3.29)
Por lo que respecta a las ecuaciones de compdaithily equilibrio, éstas se

expresarén como:

» Compatibilidad en desplazamientos:

wi=-wi=w, (3.30)
Equilibrio de presiones:
Pz =Pi =p2 (3.31)
Quedando el sistema de ecuaciones global tal y cigoe:
1 1
H HY o] |PY [6f 6t o] |
2 2| P2 T 2 ol |W2 (3.32)
0 H; Hj 2 0 G; G 2
b3 w3

3.4.3 Interfase viscoelastico-escalar.

Este tipo de interfase es el que mas dificultadesgmta. A modo de clarificar

un poco todo lo explicado, vamos a pensar en & dasun contorno de interfase

existente entre una presa y el agua embalsada.
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Figura 3.3. Contorno interfase entre estructuraagencion y el agua embalsada.

La resolucion de este caso presenta la particaldie tener seis incognitas por
nodo (ux, Uy, Uy, by, Ly, tz) pertenecientes al contorno del sélido (estructdea
contencion), y dos incognitas por nofie w) como pertenecientes al medio escalar
(agua embalsada). Aplicando el MEC tanto al medszoelastico como al medio

escalar, dard como resultado el sistema de ecucgure se expone a continuacion:
H-ul +H) -u}=G{ -t} +G;-t3 (3.33)
HZ -p5 + HZ -p% = G5 - w2 + G2 - w3 (3.34)

Donde(, se corresponde con el medio viscoelastién, we corresponde con el

medio escalar.

Las ecuaciones de compatibilidad y equilibrio encehtorno de interfase
presentan la dificultad afladida de relacionar &gables que definen a ambos medios.
Por lo que respecta a la condicién de compatillidia desplazamientos en la interfase,
ésta se manifestara de modo que el movimiento nadeiza ser igual tanto para el

medio viscoelastico como para el medio escalar, #isj,, n,, y 7, son los cosenos

directores de la normal al contorno del liquidbctandicion se establece como:

W=ux-nx+uy-ny+uz-nz (3.35)
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Por lo que respecta al equilibrio, éste se expgada interfase como la igualdad
entre la tension normal al contorno del sélido presion en el liquido, afadiéndose la

ausencia de tension tangencial en la interfase.destraduce en:

by =D MNx (3.36)
ty =p-1ny (3.37)
t,=p-1n, (3.38)

Mediante el uso de las expresiones que hacen mefarento al equilibrio como
a la compatibilidad de desplazamientos, sera viaeresar cuatro incognitas en

funcion de las otras cuatro, quedamdla,, u, y u, como las incégnitas de la interfase.

Ahora introduciremos estas expresiones tanto &3)Y8omo en (3.34) con el fin

de poder obtener un sistema de ecuaciones glotaépte tipo de interfase.

Comenzaremos por la expresion referida al domipiantroduciendo para cada
nodo del contornd’, las expresiones referidas al equilibrio (3.36)3T3 y (3.38), de
modo que:

(P11 Mx
P11y
P11z
Hi-ul +H-ul=G{ -t} +G;-| (3.39)
Pn - Nx
Pn Ny
NUTRRIPR

Siendon el nimero de nodos del contorno interfase. Podemmsobstante,
reorganizar la expresion y definir una nueva matgiz, en la que cada término es la
suma de los términos que multiplican al mismo vadeda presién por la componente

del vector normal correspondiente:

12 _ v'3 1
Gz ij = Zk=1 G i3j-3+k Mk (3.40)
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La nueva matriz tiene unas dimensiones3@e, + n,) X n,, siendon; y n, el
namero de nodos de los contornos 1 y 2 respectivi@mpor tanto, el sistema puede

rescribirse como:
Hl -ui + H} -ul =Gl -t} + G3% - p5 (3.41)

Ahora nos centraremos en la expresion referidaoatimio Q,. Al igual que
sucediera antes, sustituiremos para cada nodo detoroo I, la expresion
correspondiente a la compatibilidad en desplazawserobteniéndose el siguiente
resultado:

Ux1 "Ny Uy Ny Uz T3z
HZ - p% + HZ - p5 = G - : + G2 - w? (3.42)
Uen *Mx  Uyn "My Uzp Tz

También podemos definir una nueva matfiz! en la que el nimero de
columnas sera tres veces mayor a la matriz de dapgoviene. Entendiendo un poco
dicha matriz, las tres columnas de la primerasiaorresponden con el primer valor de
la matriz primitiva multiplicado por cada uno ds lmosenos directores de la normal. Lo
mismo sucedera con el resto de elementos; por, teatla término de la nueva matriz

podréa escribirse como:
21 _ 2
Gy =G5 5 M (3.43)

Por lo que respecta a la dimension de la nuevaianasta obedecera a la

siguiente expresion:
(nz +7’l3) X3'n2

El sistema de ecuaciones para el dominio del mestalar, una vez introducida

G2, queda como:
HZ -p5>+ H?-p3 =G2'-u, + G2 - w2 (3.44)

Finalmente partiremos de las expresiones deducmla ambos medios
(viscoelastico y escalar) durante este apartada patar de obtener el sistema de

ecuaciones global, el cual quedara como:
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3n, 3M2 N2 na Uy
3(”1"‘”2)[}:;1I Hy —Gy? ?] Uz _[[611]'{%}]
(m+m2) [0 —GF' H H§| P2~ 1[GF] - {¢.)
b3

(3.45)

Donde quedan indicadas las dimensiones de lascestrsiendar,, n,, n; el

namero de nodos de los contoripd’,, I'; respectivamente.
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3.5 Aspectos relacionados con la aplicacion del MEC.

3.5.1 Tipos de elementos de contorno.

A continuacion trataremos de definir los tipos #entos que van a ser usados
en los modelos correspondientes a los problemasegemetan a estudio. Unicamente
dispondremos de dos tipos:

* Elementos cuadraticos cuadrilateros de nueve nodos.

» Elementos cuadraticos triangulares de seis nodos.

Dichos elementos seran representados a continug@adno que respecta a la
numeracion de los nodos, ésta se realizara talmocse indica en la figura, con la
finalidad de que se defina la normal saliendo thetgpdel papel; resulta esto ultimo ser

un aspecto importante a la hora de definir los efdnos con los que discretizar un
contorno determinado.

@ -

‘ ‘
X2 -

®) ra

Figura 3.4.a Elemento cuadratico cuadrilatero etoelinio cartesiano 3-D y en el dominio transformad

Figura 3.4.b Elemento cuadratico triangular enoghithio cartesiano 3-D y en el dominio transformado.
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La geometria del elemento se aproxima por medioum@s funciones de
interpolacién, también llamadé&snciones de formaa partir de la posicion de los nodos
gue forman parte del elemento. Las variables dablema en el interior del mismo,
también se aproximaran mediante estas funciondésra@ a partir del valor que toma
la variable en los nodos del elemento. Ahora, raostnos las funciones de forma para

cada uno de los tipos de elemento utilizados eadarde las coordenadas naturdes

Yy 2!

Para elementos cuadrilateros, las funciones deaf@mfuncion de&; (—1 <
FI<1y 2 —1<¢2<1 son:

1 1
¢1=Z'$€1'($€1—1)'52'(S(2—1) 4)2:5'(1—8{12)'52'(52—1)

1 1
¢3=Z'f1'(51+1)'52'($(2—1) ¢4=§'$€1'($€1+1)'(1—522)

1 1
¢5:Z'f1'(f1+1)'fz'(§2+1) ¢6:§'(1_€12)'€2'(€2+1)

1 1
¢7=Z'f1'(51—1)'52'($(2+1) ¢8=§'§1'(€1_1)'(1_€22)

Po=(1—-¢7)-(1-¢&) (3.46)

Para elementos triangulares, las funciones de femfancion de; (0 < &, <
1y ¢20<¢2<1y {3=1—¢1—¢2 son:

$1=6-2&5-1) ¢,=&-(25,-1)
$3=83-(25—1) P=4-&-&
bs=4-6283 Po=4-81¢3 (3.47)

Estas funciones de forma permiten aproximar de docoadratica la superficie
del contorno erX;, X,, X;. De la misma manera, aproximan las variables adlema

en puntos internos al del elemento.
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3.5.2 Evaluacion de las integrales en el contorno. Siagdhdes.

Primeramente, recordar el hecho de que al aplidsiE€ sobre las ecuaciones
integrales del contorno obteniamos una formulacépresada en sumatorios de
integrales extendidas a los elementos de cont@ioho expresion particularizada para

medios viscoelasticos, toma la siguiente forma:

ctout + XV {frj[t* - @] dFj}uj =3 {frj[u* - @] dl}} t/  (3.498)

Dando un paso mas en la ecuacion, podriamos rekcdb la siguiente manera:
ct-ul + NN gin.yn = YNN gin . ¢n (3.49)
Donde los términos de las matrices son:

A" = thrtT* - g dT; (3.50)

G = fort U* - ¢, dT; (3.51)

Siendot el nUmero de elementos a los que el nogertenece y su posicion
local en el elemento; por otro lado, estas integrabn las que se deberan evaluar en

cada uno de los elementysen los que se ha discretizado el dominio.

Los términos de las matrices deducidas arriba sdgruobtener cuando el nodo
n es diferente al nodiode aplicacion de la carga. Para ello, se evaluanaréricamente
las integrales usando una cuadratura gaussianadastsobre elementos rectangulares.
Dichas cuadraturas vendran expresadas en funciomagiecoordenadas naturales
HE(-1<E <1 Y& (1 <é,<1), locual exige la transformacion de las variables

geométricas que aparecen en las integrales omgimalas coordenadas naturales.

El diferencialdl’ puede expresarse como:

ar ar
= |— X —
dr 9§, 0§

©08 - 08, = |Jal - 08, - 0, (3.52)
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Siendo|/,| el jacobiano de la transformacion:

Figura 3.5. Transformacién de coordenadas pargraxt&n numeérica.

Segun nos aproximamos a la geometria del contertierse que:

aor dx oD ;
— =—==—"y/ 3.53
0 0%, 0k ( )

Por lo que el jacobiano viene dado por:

ar ar
—_— x JE—
981 0%

=== _=.== =19 (3.54)

Jal = V97 + 95 + 95 (3.55)

Las componentes del vector normal en cada puntenidadas por:

Ik

n, =2k 3.56
T (3:56)
Expresando la derivada deespecto a la normal en el contorno:
a ]
=2 (3.57)

%_Oxk' k
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Por tanto, las integrales a evaluar en funciénagdecbordenadas naturales del

elemento pueden escribirse de la siguiente manera:
A= [ [T g Ual - dé; - &, (3.58)
G" = [ J U &g lal - d&; - d&, (3.59)

Cuando el punto de colocaciénforma parte del elementpsobre el que se

integra, los nacleo§™ y U* presenta singularidades de tirk(%) y 0(%2) en los

términos tratados anteriormente. Quiere decir gg®en los términos de las matrices

H™ y G™ para los qué = n, se tiene que:

gin = fortT* - g dT; (3.60)
G =%, U ¢qdl; (3.61)

Para llevar a cabo el tratamiento de los térmirémslichente singulareéO G))

se debera seguir un procedimiento que consistauscab un nuevo sistema de
referencia donde el subintegrando sea regular. élaxael jacobiano entre este sistema
de referencia y el sistema de coordenadas homogéaeale serO(r). Este
procedimiento puede ser consultado para elementadrititeros mediante Aznéarez
(2002) y para elementos triangulares mediante Dgunen (1993). Este tipo de
estrategias fueron expuestas por primera vez pcohdtay Watson (1976), siendo
revisadas posteriormente por éf al. (1985), Telles (1987) y Cerrolaza y Alarcén
(1989).

Por lo que respecta a los términos fuertemente ukkires, existen
procedimientos indirectos (no muy rigurosos) y ctiwve para afrontar el problema, asi
como una amplia bibliografia al respecto. Por l@ gespecta a los procedimientos
indirectos, no existe un procedimiento generalrewo, puesto debe de estudiarse de
forma independiente la estrategia a seguir para peablema concreto.

El procedimiento directo a seguir para la evaluacié este tipo de términos, se

fundamenta en el hecho de considerar que la singathes realmente ficticia, puesto
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que dicha singularidad se desvanece con la conidibude los elementos adyacentes.
Para tratar de realizar un estudio en profundidadptbcedimiento, puede consultarse
Aznarez (2002), Chirinet al.(2000) y Cruse (1969).

3.6 Duplicacion de nodos en los bordes angulosos. Prella de esquina.

Hasta ahora se ha estudiado la formulacion del M&@ problemas arménicos,
evaluando las integrales en cada elemento. Unadada este paso y acopladas las
diferentes regiones que forman parte del modelgomendo las condiciones de

contorno, se ha llegado a un sistema de ecuacabgelsraicas.

Un aspecto que afiade un grado de complejidad alajeode la matriz global
del sistema, radica en la situacion de unién decdarnos con borde anguloso, como

se muestra en la figura:

1S

I g
/

AT

Figura 3.6. Borde anguloso en un problema de umactsra de contencion de aguas plana situada en un

cafion de seccioén rectangular.

Por lo que respecta a las variables derivadas idtegss en un medio

viscoelastico y flujo de presiones en un mediolasgastas presenta discontinuidad en
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los nodos del borde, debido a que como un mismm mpeEdtenece a elementos de

contornos diferentes hara que las normales tanibigean.

Para poder llevar a cabo el montaje de la matdbaijldel problema, se debera
adoptar una estrategia de duplicacion de los nedas borde de unidn entre contornos,
donde se ubica el problema. La primera consecuasxcigue el niumero de grados de
libertad del problema ha aumentado; no obstant®, ®S constituye un problema
importante en nuestro modelo puesto que el numeronados utilizados en la
discretizacion es elevado con respecto al nimernodes en los que se presenta el
problema de borde anguloso. La duplicacion de nedad borde se efectia de acuerdo
a la figura siguiente, prestando especial intemésele nodo central del borde del

elemento sobre el que nos vamos a centrar:

\/

Figura 3.7. Duplicacién de los nodos en los boedggilosos. Se plantea el problema en una estrudgura

contencién de aguas plana situada en un cafidorcd@mseectangular.

Primeramente llamaremosdo 1 al nodo duplicado perteneciente al elemento
del contorno 1 ynodo 2 al perteneciente al elemento del contorno 2. Adlidar el
nodo las incAgnitas también se duplican; por tap@ara el caso de un medio

viscoelastico tendremos las siguientes incognitasu,, t; y t,. Si se desarrollan las
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ecuaciones del MEC para los contornos implicadodaemimagen y se evallan las
integrales numéricamente, llegaremos a un sistemeealiaciones en el que las
expresiones correspondientes a la carga concengradas nodos duplicados 1 y 2

puede expresarse de forma matricial como:
hiypoup +hyp uy — g1 ti — g2tz +=f1 (3.62)

ha1-ug +hyy Uy — g1 ti —Ggap "ty + = f (3.63)

El siguiente paso sera el de centrar el estudiesties dos ecuaciones para las
diversas situaciones que puedan darse a la hdeidgosicion de las condiciones de
contorno, viéndose afectados los nodos duplicad@siestion.

Inicialmente se considerara que las condicioned&rno vienen impuestas en
términos de tensibn en ambos contorn@s yt,). En dicho caso, el vector
desplazamiento podra determinarse sin mayor incoene a partir del sistema de

ecuaciones planteado anteriormente.

Otra de las posibles situaciones que pudieran darde que a imposicion de
condiciones de contorno se refiere, radica en @idee conocer el vector tension para
el nodo perteneciente al contorn@t]) y el vector desplazamiento correspondiente al
contorno 2(u,) o viceversa; es decir, que se conozca el despiaatoren el contorno
1 y la tension en el contorno 2. En ambos casovalelr de las incégnitas podra

obtenerse a través de la resolucion del sistenegwhciones.

El problema se nos manifiesta cuando las condisiahe contorno vienen
impuestas en términos de desplazamiento para atobtsnos(u, y u,). En este caso
concreto, la sustitucion de las condiciones dearanten el sistema de ecuaciones nos
conducira a dos expresiones idénticas, provocando g sistema de ecuaciones a
resolver sea singular. Esto se conoce con el noadproblema de esquindicho
problema puede presentarse en cualquier esquinfoigue parte de contornos interfase

en algunos casos de interaccion entre regionesstieta naturaleza.

La técnica a emplear para solucionar este tipo mblgma sera la de la

colocacion no nodal, la cual consiste en la susfitude una de las ecuaciones (0
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ambas) ((3.62) y (3.63)) por otra en la que el pud¢ colocacidn se encuentre
ligeramente desplazado. Asi, el punto de colocae@noincide con ningin nodo de la
discretizacion, provocando que los coeficientessadgéma sean ligeramente diferentes

y el sistema de ecuaciones resultante no sea amytdr Aznarez (2002).

3.7 Solucién al problema de un semiespacio de geometrebitraria
acoplado a una estructura y excitado con ondas (S8y, P 6 Rayleigh).

Para poder llevar a cabo la solucién a este prableonsideraremos el caso de

un semiespacio acoplado a una estructura, tal y @@muestra en la siguiente figura:

-
Cruoln Estructura

Onda Incidente

Figura 3.8. Semiespacio de geometria arbitrariplado a una estructura.

Seguidamente llamaremas y t; a los campos de desplazamientos y tensiones
que son solucién al problema del semiespacio denget@ variable acoplado a una
estructura excitado por un campo incidente de orifasSv, P, Rayleigh). Dichas

soluciones seran consideradas como la superposieidos problemas:

us Yy tg que se corresponden con los campos de desplazangitansion que son

solucion al problema del semiespacio elastico p(amopresencia de la estructura).
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Suelo

Onda Incidente

Figura 3.9. Problema correspondiente al semiesgd@stico plano.

uy; Y tg que se corresponden con los campos de desplazanmyjetension
producto de la distorsidbn provocada por las irragdades de la superficie del
semiespacio y el acoplamiento de la estructurar@bl@ma del semiespacio elastico

plano.

Por tanto, la solucion del campo de desplazamigntesisiones en cada punto
del dominio del problema objeto de estudio puedeakisse como:

Uy = Ug + Uy

=t +t, (3.64)

Planteando el teorema de reciprocidad sabyey t; para, posteriormente,
aplicar el MEC a la formulacion integral obtenidgugendo los procedimientos

descritos con anterioridad, nos conducira a laieije expresion matricial:
H- Ug = G- td (365)

Operando adecuadamente con las expresionas det, sobre la expresion
matricial, podremos volver a rescribir dicha expnesen funcién de los campos de
desplazamiento y tension que son la solucion dblenea objeto de estudio. Asi, se

tiene que:

H- (ut - us) =G- (tt - ts) (3.66)
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Reordenando los términos de dicha expresion:
H'ut—G'tt=H'uS—G'tS (367)

El lado derecho de la ecuacion es totalmente cdoodtia resolucion de este
sistema de ecuaciones proporcionara la soluci@hadbs campos de desplazamiento y
tension del problema de un semiespacio con geamatpitraria y excitado mediante

una onda sismica.
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4 Ecuaciones de propagacion de las ondas sismicas

4.1 Introduccion.

A lo largo de este capitulo, trataremos de introdlas ecuaciones que
gobiernan el fendmeno de la propagaciéon para cadale las ondas que componen un
terremoto. Mas concretamente, nos centraremos @mirteera parte del capitulo en
deducir dichas expresiones para el caso en ellgquar® de propagacion se encuentra
situado perpendicularmente al plano de simetritadestructura; la segunda parte del
capitulo centrara el estudio en la deduccién dbhadicecuaciones cuando el plano de
propagacion de las ondas tiene un caracter gemsrdecir, puede incidir sobre el plano

de simetria de la estructura desde cualquier argquécse considere.

4.2 Onda SH

Partimos de un grafico inicial, en el cual constateos la incidencia y reflejo de

una onda SH sobre una estructura de contenciogude §presa). Asi, tenemos que:

AL, | - p

p© Agp

Figura 4.1. Gréfico explicativo para onda SH inoide
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Una vez realizado el grafico, introducimos las congntes de los vectores

propagaciorn(p) y direccion(d) de la onda SH incidente y reflejada respectivament

ParaAl,:
) _
(0). ) . (0) {’pz = cos 0,
p ) 0‘p rp
( 2 /P3 ) p§0)=sin00
d©:(d”,0,0){d” =1
ParaAy,:

@ @ [ s’ = cosb;
p (O, P2 D3 ) (1) .
p; = = —sinf,

d®: (d{”,0,0){d =1
4.2.1 Campo de desplazamientos

A continuacion, deducimos las expresiones del cam@odesplazamientos

u(uq, uy, u3) = u(u, v,w), teniéndose que:

; —iko(p(©. —ik(pD.
u=d?. A, e~ ks@r) 4 g gr, . emiks(PT)
v=20
w=20
u= Aih . e—iks(cos 6oy+sin 6yz) + Arh . e—iks(cos 6,y-sin6,z)
S S
v=20
w=20
Para poder satisfacer cualquier condicion de cootgue sea conforme a lo
largo del “eje y”, serd necesario que todas lasasrndngan la misma variacion en esa

direccién, de modo que:

cos 8y = cos 0,
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Esto implicara que:

'pgl) = cos 6,

pgl) = —sin§,

Quedando la expresion final del campo de desplazdans de la siguiente

manera.

u= Agh . e—iks(cos 6oy+sin 6yz) + Agh . e—iks(cos 6oy—sin6yz)
v=20
w=0

4.2.2 Campo de deformaciones

Partiendo de la expresion que hace referencial@alloade las componentes del

tensor de pequefas deformaciones:
1
€j =5 (uij + )
Y asi como al tensor propiamente dicho:
0 &3 é&3
E = 521 O 0
&1 0 0

El siguiente paso sera obtener las expresionescpdeauno de los términos del

tensor:
€12 = €21 = %(um +upy) = %(“1,2)
u, = —d9 p® ik, - AL, - o—iks(p©@-r) _ dV . pM ik, - AT, - o —iks(p®r)
€13 = €31 = %(um + u3,1) = %(um)

tys = —d© p® ik, AL, e POT) _ gD D g g o (6O)
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Llevando a cabo las sustituciones pertinentesnebtes las expresiones finales:
1 . i —iks(cosByy—sinfyz)
slzzi-(—coseo-Lks-Ash-e s 4 0

—cos B, -iks - AL, - e~ iks(cos §py—sin Goz))

813 = ' (_ Sln 90 ' iks * A;h * e—ikS(COS Goy—sin GOZ) + Sln 80 * iks * Agh

N| =

] e—iks(cos Boy—sin Goz))

4.2.3 Campo de Tensiones

Vamos a tratar de determinar el campo de tensipagg&ndo de la expresion
inicial de la ley de comportamiento de un matetelcual establece relacion entre la

tension y la deformacién para puntos pertenecientbsho material.
O'i]' =2.u'£i]'+l'gkk'6ij
Donde:

Por lo que respecta al tensor de tensiones:
0 o0y 033

g = 0-21 O 0

o317 O 0

Deducimos los términos del tensor de modo que:
011 =022 = 033 =023 =03 =0
O12 =021 = 2L &q

O1p =U" (_d:EO) . péo) . lks . A;h . e_iks(p(O)'T) — dil) . pgl) . lkS . Agh . e_iks(p(l)'r))
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013 =031 = 21- &3
0 0 - i —ike(p©. 1 1) . —ik(p®
1 = - (- p® - ik - Ay - e O a0 g a7, e OO))
Sustituyendo cada término por su valor:

01, = U+ (_ cos 90 . iks . Aéh . e—iks(cos 6oy—sinfyz)

—cos B, iks- AL - g~ iks(cos By —sin Goz))

013 = pt - (—sin By - ikg - AL, - e~ iks(cosBoy=sinboz)  gin @, - ik, - AT,

. g~ iks(cosBpy—sin 002))

A continuacion, vamos a tratar de obtener el vdias amplitudes. Para ello,

debemos de considerar una serie de condicionasscaheo:

El valor de la tensién a nivel superficial deberadp. Esto es:

x#0
Y punto {y # 0 se cumple = {oy3=0
z=0
Lo que implica que:
1
013 = 2#'(5'”1,3) =p-u3=0

& —1-sinfy AL, —1-(—sinf,) A%, =0

Llegados a este punto, introduciremos una nuevdicion, la cual sera la de
considerar como unitario el valor de la amplitudap onda incidente; es decir,

L, = 1. De este modo:
& —sinfy +sinfy - Ay, =0
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Una vez obtenidas las amplitudes, introduciremasvimores de éstas en sus
correspondientes expresiones; esto nos llevarimlolpaso, el cual sera el de obtener
las expresiones finales del campo deformacién siderrespectivamente (componentes

simétrica y antisimétrica).

4.3 Onda P

Inicialmente dispondremos de la siguiente figuran@do de aclarar toda la
nomenclatura utilizada e interpretar correctamehsentido y direccion de los vectores

implicados en el analisis.

4

(€]

A |
AT, p®@

Figura 4.2. Grafico explicativo para onda P inctden

d©

Partimos de las expresiones del vector direcaidh y propagacion(p)
respectivamente para cada una de las ondas quecapan el grafico en funcién de los

ejes de referencig, y, z). Asi, tenemos que:
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Parad:
0 _
d©:(0,d,ds”) {dz = cos by
d® = sin g,
0 _
(0). © _(©)|pz =cosb,
pi\0,p 7, p {
( 2 3 ) P§0)=Sin90
ParaAy,:
1) _
d®:(0,a5”, dg”){ dy "~ = cos b,
dP = —sin6,
1) _
. 1 @ p, = = cosb,
p’:\0,p,",p {
( 2 3 ) pél) — _sin6,
Para4s,:

2 _ ;
d(Z)(O d(z) d(z)) dZ - —sm@z
N yUo U3 d(z) = — oS 92
3

p®: (0 p(z) p(z)){ sz) = cos 0,
2 pl = —sine,

4.3.1 Campo de Desplazamientos

El siguiente paso sera deducir la ecuacion que egudbi el campo de
desplazamientos de la onda P. Asi, deduciremoguUaceén para cada una de las

componentes del vector desplazamidhtu,, u,, us) = (u, v, w).
u=20

v = ng) -A; . e~ ikp(P©-1) + dgl) AT - e~ ikp(PW-7) n d§2) AT, - o—iks(p®-r)

w=d® 4L e O7) 4 gD AL (PP T) 4 gP) L AT, ik (@)
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Una vez deducidas las expresiones del campo ddadeaspento, hemos de
introducir una serie de condicionantes a modo atartrde simplificar las expresiones
anteriores; la primera de ellas, sera la de cormidgue para que la condicién de

contorno sea constante a lo largodjely es necesario que:
0 1 2
kp - p3” = k- 5" = kg - p5?

cosf, cosB,

cosf, cosB; cosH, Cp Cs
= = —_ C
Cp Cp Cs cos 8, = = - cos f
90=01 \-E
k
Esto implicara que:
pgl) = cos 6, dgl) = cos 6,
pgl) = —sinf, dgl) = —sinf,

Finalmente:

pgz) = cosf, =k -cosf,

péz) = —sinf, = —\/1 — k? cos? 6,

dgz) = —sinf, = —/1 — k2 cos? 6,

dgz) = —cosf, = —k-cosf,
4.3.2 Campo de deformaciones

A continuacion, deduciremos el campo de deforma&as@partir de la expresion

del tensor de pequefias deformaciones. Asi, tengo®s

1
&j =5 (uij + )
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Dicha expresion relaciona las deformaciones con damponentes del
desplazamiento en el punto sometido a analisisraAtrataremos de deducir cada uno

de los términos del tensor de deformaciones.

Partiendo de la siguiente matriz:

Donde:

Al no existir componente del desplazamiento enjeelXe podemos concluir lo

siguiente:
€11 = €12 = €13 = &1 = €31 =0
Quedando el resto de los términos de la matrig ¢aimo sigue:

£ = —d® - p® - ik - AL - e W @) gD pD e AT ik (PP T) gD

P ik - AT, - e s (@ D)

£33 = —d - p - ik, - AL e~ H PO T) — gV pD i, AT i) — gD

p$ - ik - AT, - e Hs(@ D)

28,3 = 283, = _(dgo) -'péo) + dgo) -péo)) < ik, - AL - e~ ikp(p@T)
_ (dgl) -pgl) + dgl) -'pgl)) ik, - AT - o~ ikp(P®-r)

— (a4 dP pP) ik - AT, - )

Epk = Exx T+ Syy + &,
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. i —i (0).
fr = _(dgo) 'pé()) n dgo) _pgo)) Ciky - AL - e iky(p©@r) _ (dgl) .p§1) n d§1) -pél))
- 00 (4P D4 dD D).t

. e—iks(p(z)-r)

Sustituyendo cada uno de los términos por su \@arespondiente, tenemos

que:
€15 = — €052 O - ik, - AL - e~ Hkp(cosboysinboz) _ o529 . il - AT
- " tkp(cos Boy—sinboz) _ (—\/1 — K? cos? 90) - (K cos 6y) - ik - AL,
-9 - —K2 2
e lks((K cosBy)y (‘/1 K2 cos GO)Z)
£33 = — sin?2 90 . ikp . A;’) . e—ikp(cos 6oy+sin6yz)
—sin? 8, - ik, - Ay, - e ~tkp(cosboy=sinfoz) _ (g g 0,)
, —ik ((KcosG )y—(+/1-KZ2 cos2 6 z)
'(\/1—K2C05290)"ks'/1§v-e ’ o~ 0)
— — - - ; i . —ik Boy—sin 6
2893 = 2&3, = —(cos B - sinfy +sin by - cosBy) - ik, - Ay e p(cos 6oy —sin 6oz)

; ; P T —iky(cos Bpy—sin gz
— (—cos By *sinB, — sin B, - cos By) - ik, - A}, - e p(cosboy 0%)

— ((1 = K? cos? 8y) — (K? cos? 6y)) - ik - AL,
e—iks((K cos So)y—(w/l—KZ cos? GO)Z)
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exx = —(cos? 6y + sin? 0y) - ik, - AL, - e ~tkp(cosBoy+sinboz) _ (cos2 g, + sin? 6)) - ik,

. A; . e—ikp(cos 6py—sinfyz)

B ((_\/1 — K? cos? 6’0) - (K - cos ;) + (K - cos 6,)

. (\/1 — K2 cos? 00)> . lks . Agv ] e—iks((KCOS Go)y—(\/l—Kz cos? 90)2)

4.3.3 Campo de Tensiones

Una vez determinado el campo de deformacionesg@kste paso sera deducir

el campo de tensiones. Para ello, partiremos degdeesion inicial:
O'i]' =2.u'£i]'+l'gkk'6ij
Siendo:

Dicha expresion es la denominada ley de comportamie un material, la cual
relaciona la tension y la deformaciéon en el purdmetido a estudio; por tanto, se
genera un tensor de tensiones que tiene la siguigsposicion:

o1 O 0
=| 0 o0y o0y

0 o3 o033

Al igual que sucediera en el campo de deformacidmggtérminos en la matriz

gue se consideran nulas al no existir componeiwtel desplazamiento. Por ello:
012 =013 =031 =031 =0

A continuacion obtendremos el resto de términoa deatriz. Asi, tenemos que:
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o1 = —A- [(ng) _p§0) + d§°) 'PéO)) -k, -Aé . e~ tkp(0®-7)
(5 ps? +dsDpV) ik - A e )

+(df - pf? +dP - p?) - ik - AL, - eI T)]

022 = — [/1 . (dgo) . péo)) + (A+2u) - (dgo) . p§0))] . ikp . A;’) ) e—ikp(p(o)-r)
_ [,1. (dgﬂ -pgl)) + (L +2u) - (dgl) .pél))] e AT - -k (0)

_ [A- (ng) ,p§2)) (4 20) - (dgz) -péZ))] ik, - AT - g-iks(P®)

033 = — [/1 . (d§0> .p§0>) + (A+2u) - (déO) _p§0))] ik, -Aé . p=ikp(p©-1)
— [/1- (dgl) . pgl)) + (A4 2p) - (dgl) ) pgl))] ik - AD - o—ikp(p™-7)

— [ﬂ. . (dgz) . pgz)) + (A+2u)- (dgz) . pgz))] cikg - AT, - e_iks(p(z)-r)

Oy3 = 2# ©Ey3 = —U- (dgo) . pgo) + ng) . pgo)) . lkp . A;? . e_ikp(p(o)'r) —-u
(A 0+ p0)-thy A0

(A2 pf? ) sy e
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Sustituyendo cada término por su valor:

o1 =—A- [—(cos2 6y + sin? 6,) - ik, - A - g ~ikp(cos Boy+sin fz)

— (cos? 8, + sin? §,) - ik, - A, - e ~tkp(cos 8oy —sin 6oz)

B ((_\/1 — K2 cos? 6’0) - (K - cos 6y) + (K - cos 6,)

. (\/1 — K2 cos? 90)> . lks . Agv ] e—iks((KCOS eo)y—(\/l—Kz cos? 90)2)]

022 = —[A-sin? Oy + (A + 2p) - cos? By] - ik, - AL - g ~ikp(cosBy+sin6z)

— [A-sin? 6y + (A + 2p) - cos? O] - ik, - AL - e~ tkp(cos foy=sinboz)

- [A-(Kcoseo) (\/1 — K? cos? 90) — (142w

. (\/1 — K? cos? 90) (K cos 90)] “iks - Ay

e—iks((K cos Go)y—(\/l—KZ cos? 90)2)

033 = —[A-cos? 0y + (A + 2p) - sin? By - ik, - AL, - e~ Hp(cosboy+sinoz)

— [A-cos? 8y + (A + 2u) - sin? B,] - ik, - AL - e~ tkp(cos foy=sinboz)

- [/1 - (K cos 8,) (—\/1 — K? cos? 90) + (A +2u)

- (K cos 6,) (\/1 — K? cos? 90)] - ikg - AL,

e—iks((K cos Go)y—(\/l—KZ cos? 00)2)
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0y3 = 035 = —pt(cos By - sin B + sin B - cos By) - ik, - AL - e~ tkp(cos oy +sinboz)

— u(—cos By - sin@y — sin B - cos Oy) - ik, « AL - e~ kp(cos foy=sinboz)
— u((1 = K2 cos? 6y) — (K? cos? 6y)) - ik - AL,

e—iks((K cos Ho)y—(\/ 1-K?2 cos? Go)z)

Ahora se tratara de obtener el valor de las anugéul), y Af,. Para ello,
impondremos condiciones de contorno, las cualeblesen que:
x+0

V punto {y # 0 se cumple - {
z=0

0-23=0
0-33:0

Asi como que la amplitud de la onda incidente Er@ralor unitario; esto es:

Asi, tenemos que:

Establecemos;; Yy g,3 en funcién d&d, y 6, y, asi, poder operar con mayor

facilidad:

033 = 0 = —[1- cos? Oy + (A + 2u) - sin? B,] - ik, - e~ Hp(cosboy)
— [A-cos? 8y + (A+ 2u) - sin? ;] - ik, - A; . o ~ikp(cos 6oy)
— [ﬂ, . (— sin 92 + COS 92) + (ﬂ, + 2#) . (COS 92 . sin 02)] . lks . ATS”V

. e—iks((cos 6,)y)

e 0=—((A+2u)- sin?6,) ik, — ((A+2p) -sin?6,) - ik, - 4},
- (—A- (sin@, - cos ;) + (A + 2u) - (sin 6, - cos 92)) ik - AL,
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1
e 0=—((A+2w) - sin®6;) — ((A+ 2p) - sin?G,) - Ay — 2 - (sin @, - cos 65) X

r
: Asv

A (02 A (02 T 1 1 T
e 0=—<ﬂ+sm 90>—<5+sm 90)-Ap—§-sm292-E-As,,
1 1 - 1 1 - . 11
= 0=—(§-ﬁ—1+sm 90)—(§-ﬁ—1+sm 90)-Ap—<§-z-sm292)
'Agv

1 1 2 r 1 1 . r 1 1 2
o (g 0) A+ (5 sin20s) A=y pteoste, ()

Por otro lado, haremos lo mismo cof3:

023 = 0 = —p - (cos by - sinfy + sin b - cos by) - iky, - e~ tkp(cosboy) _
- (—cos 6y - sinfy — sin b - cos b,) - ik, - Ay, - e~ tkp(cosboy) _

- (sin? 0, — cos? 8,) - ik, - AT, - e~tks((cos82)y)

1
& sin26, - A} — (sin® 8, — cos? 6,) Ve A%, = sin 26,

1
& sin26, - A}, + cos 26, e A%, = sin 26, (2)

Por tanto, en términos dg y 6, (véase Achembach (1973)), quedaria:

1

1 2 r 11 : r 1 1 2
(E'F_COS 00>-Ap+(§-ﬁ-sm292>-Asv =—§-ﬁ+cos 0,

1
sin 26, - A} + (E cos 292) - A%, = sin 26,




Ecuaciones de propagacion de las ondas sism

Generandose un sistema de dos ecuaciones con cgnitas 47, y Ag,).

Mediante la aplicacion del programa MATLAB, se dgos llegar a la solucion del

sistema de ecuaciones, la cual sera:

A — K? - sin 20, - sin 20, + cos 20, — 2K? - cos 26, - cos? 6,
P K2 .sin26, - sin 260, — cos 26, + 2K?2 - cos 26, - cos? 6,

4K -sin@, - cos B, - (—1 + 2K? cos? 6,)
2K? - cos 26, - cos? 6, — cos 26, + K? - sin 26, - sin 26,

Ay =
Sometemos ambas expresiones a simplificaciones:
ParaAy,:
1—2K?cos?6,=1—2cos?0, =1—cos?6, — cos? 6,

& 1-—cos?6, —cos? 6, =sin? 0, — cos? B, = — cos 20,

ParaAl,:
4K - sinf, - cos 8, = 2K - sin 26,
2cos6, —1 = cos 26,

Por tanto, las expresiones finales son:

o= K? -sin 26, - sin 26, — cos? 20,
P K2 .sin26, - sin 20, + cos? 26,

2K - sin 26, - cos 20,
K? - sin 26, - sin 20, + cos? 20,

[ A—
AS‘V_

Introduciendo los valores del;, y Af, en las expresiones deducidas
anteriormente, obtenemos las expresiones finales @lacampo de desplazamiento,

deformacion y tension respectivamente (componemiétsca y antisimétrica).
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4.4 Onda SV

| 02
B d@
| \ Ay
p@
p(o)
. d® “
Asv | /<\ Asv
| ®
A0 6, p

Figura 4.3. Gréfico explicativo para onda SV incige

Un primer paso a realizar sera el de incorporaeigsesiones tanto del vector
direccion(d), como del vector propagaci@p) para cada uno de los tipos de onda que

se manifiestan en este caso. Asi, tenemos que:

ParaAL,:
0 _
©. (g © {pz = cos 6,
p:(0,p,7,p
( 2 /D3 ) p® = sing,
0) _ o
d©. (0 d© d(o)) { d,” =sin6,
27 A = — cos 6,
Paradg,:

pW: (0 p(l) p(1)) { Pél) = cos 6,
£ pP = —sing,
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L _ :
d(l) (0 d(l) d(l)) dZ = —Ssin 91
H y 2 U3 d(l) = — cos 91
3

Para4y,:

@ @ @\ [ Py = cosb,
p (0' P2 D3 ) 2) ,
p;~ = —sinb,

(2) _
d®@. (0, 4@, d(z)) d,” = cos b,
77 d® = —sing,
3

4.4.1 Campo de Desplazamientos

Seguidamente pasamos a deducir el campo de desptaras. Considerando la
expresion inicial del vector desplazamietéu,,u,,u;) = (u,v,w), es importante
resaltar el hecho de la no existencia de la commeng (u) para este tipo de ondas.

Asi, se tiene que:

u=20
v=df - AL, - em PO 4 gD Ay, eI ) 4 ) ap ()

w=d® AL, e PO 4 gV A7, e HEOT) 4 @) A7 e (P P)

Sustituyendo adecuadamente cada término, llegaranuosis expresiones tales

como:
u=20

v =sinf, - AL, - e ~iks(cosBoy+sinboz) _ gip 0, AT, - e~ iks(cos01y-sin6:2) 4 ~ng 9, - A?};
. e—ikp(cos 6,y—sin 6,)
W = — COS 90 . Alsv . e—lks(c0590y+sm902)

— COS 91 . Agv . e—lks(cos 6,y-sinf,z) __ sin 92 . A?}; . e—lkp(cos 6,y—sin6,z)
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Siendo:

p(o)-r=p§0)-y+p§0)-Z=c0590-y+sin90-z
p(l)-r=p§1)-y+p§1)-z=cost91-y—sin@l-z
@ .y =@ . @, = .y —sin®, -
p r=p, cy+p; rz=cosb,-y—sinf, -z

Para satisfacer cualquier condicion de contorndocore a lo largo det¢je y, es
necesario que todas las ondas (incidentes y rééis)jdengan la misma variacion en esa

direccion.

Asi, para que esto suceda la compongrdel producte - r deben igualarse, de

modo que:
0 1 2
ks py” = ks -ps? = ky -
cosfy _ cosB; _ cosb,
6 cs cp (1)
91=00

El hecho de qu#, = 6, conlleva a las siguientes modificaciones en alguna

componentes del vector propagacion y vector diéecaspectivamente.

p? =p®  piY = —p{¥

dgn _ _dgo) dgn _ dgo)
Por otro lado, continuando con lo expuesto en (1):

cosf, cosH,

Cs Cp

Cp
cosf, = —-cos b,
CS

=>1

¢, [2a-w]" 1
& _ |2U=v)
ll—Zv K

Cs
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Ahora se procedera a estudiar diferentes situagique pudieran darse para este
caso concreto; por ejemplo, una de ellas serd laatesiderarcosf, = 1. Esto

provocara que se genere una onda P incidente pteagzicho caso propiciara que:

Por tanto, la obtencién del angulo critico debea@pcirse mediante:
cosf., =K

Donde dicha expresion dependera del coeficiente Pdesson (v). Asi,
dispondremos la siguiente tabla de valores en dgueele observarse el valor del

angulo critico en funcion del coeficiente de Paisso

v (coeficiente Poisson) K 6.-(grados)
0.2 0.612 52.240
0.3 0.535 57.690
0.4 0.408 65.910
0.5 0 90

En el caso de qu& < 6., implicara que:
cosf, >1

Asi como:

sinf, =+/1 — cos? 6,

Esto implica que el problema sea resuelto medintatilizaciéon de razones
trigonométricas de caracter complejo, no considkrs® como validas las ecuaciones
deducidas a lo largo de este apartado. Asi, laesimes del campo de desplazamiento
deducidas con anterioridad seran validas para laguahgulos de la onda incidente que

cumplan que:

0y > 0.,
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Puesto que en dicho caso podremos tener en cueda sibuientes

consideraciones, las cuales hacen referencia antisndel vector de propagacion y

direccion:
1 1
péz) = E . péO) = ECOS 90 dgz) = péz)
@ @)? 1 ‘e
p; = — 1—(p2 ) = — 1_<ECOSGO> d;” =p;

Existen algunas peculiaridades en las proximiddéeangulo critico, pero éstas

seran estudiadas mas adelante.

4.4.2 Campo de deformaciones

Recurriendo a la expresion del tensor de pequeéiasndaciones deducido en

capitulos anteriores, diremos que:

1
ey = 5 (wij + )

Siendo esta expresion la encargada de relaciosaddéormaciones con las

componentes del campo de desplazamiento.

Ahora trataremos de obtener cada uno de los tésmd® la matriz de

deformacionesla cual obedece a la siguiente disposicion:

0 0 0
= (0 €22 523)
0 &, £33

Efectivamente, seran nulos todos aquellos térmipestuvieran algun tipo de

dependencia de la componentéu,) del vector desplazamiento; de este modo:

£11=u;1 =0

(12 + uz1) = 0
812:52122 Uiz TU21) =
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(1 + usz) = 0
813=£31=E U3 TU31) =

Erp = Upy = —d® - p® - AL - ik - e~ Hs@OT) — gDy D ar g piks(p@)

—d pf - Ay - ik, - e ko)

1
€23 = &3z = E(uz,s + us,z)
u2‘3 = _ng) . ng) . A.lSV . lkS . e_iks(p(O)'r) — dgl) . pél) . Agv . lkS . e_iks(p(l)'r) —_ d£2)

p$P - Ay - ik, - e )

Us, = _dgo) .péo) AL ik, - o—iks(p©®r) _ dgl) .pgl) AT, - ik, - o—iks(p®-r) _ dgz)

pS - Ay - ik, - e )

0 (0 0 (0 ey ik (p©.
2853 = 2€5, = —(dg ) pl® 4 g p )) AL, - ikg - e~ tks(0'T)
o 1 _a . ik (p.
—(dg)-pg)+d§)-p§))-A§,,-Lks-e”‘S(p r)

(457 p5? + a5 p?) - Ay ik, - e PT)

0 0 i . —i (0). 1 1 . —i .
€33 = U3z3 = _dg ) 'Pg ) Ay - ik - e thes (P 7) _dg ) 'Pg ) Ay ik - e thes (™)

—d$? - p{ - A - ik, - e (P T)

Por lo que respecta a la dilatacién volumétrica:

Exk = €11 + &2 T+ €33
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g = —(a - p¥ +d0 - p®) - AL, - ik, - =) — (4 pP 1 aP - pP)
., —i . ,
: Agv : lks e thes(p™r) — (dEZ) : ng) + d§2) ’ p§2)) ) ATI; ) lkp

. e_ikp(p(Z)'r)

Ahora sustituiremos cada término por su expresidrespondiente:
£ = —sin @y - cos Oy - AL, - ik - e~ tks(cosOoy+sinboz) 4 (i )
. COS 90 . A?g"v . iks . e—iks(cos 6oy—sinyz)

%cos Ho)y—< 1—(% cos? 90)>z>

1 —ik(
—FCOSZQO'Ag'ikp'e a\

26,3 = 263, = —(sin? O, — cos? By) - AL, - ik - e~ ks(cos oy+sinboz)
— (—sin? 8,y + cos? 8,) - AT, - ik - e~ Ks(cosBoy=sinoz)

1 2 1 .
+ (Ecoseo) -(l—ﬁcos 00> <Ay ik

| e_ik,O((%cos ool fi-(zcostn) o)

€33 = COS 0 - sin @ - AL, - ik, - e "iks(cosOoy+sinboz) _ cog 0, - sin B, - A%, - iks

. e—iks(coseoy—sineoz) _ (1 _ %COSZ 00) . A; . ikp

(G
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g = —(sin @y - cos By — cos B - sin By) « AL, - ik - e ~tks(c0s Boy+sinbo2)
— ((—sin8y) - cos B, + cos By - sin By - AL, - ik - e~ tks(cosBoy=sin8oz)

1 2 1 .
— (ECOSHO> +(1—ﬁcos 90) <Ay ik

_ikp<(%coseo)y_( A E 90))Z>

‘e

4.4.3 Campo de tensiones

Recurriendo a la expresion de la ley de comportaimide un material, se tiene

que:
O'ij = ZM'Sij+/1'£kk'5ij
Siendo:

Al igual que ocurriera en elampo de deformacionepgartiremos de un tensor

de tensiones tal y como se muestra a continuacion:

o1 O 0
o= ( 0 o0y 023)
0 o3 033

Donde el célculo de cada uno de los términos deodiensor viene dado por:
0 0 0 0 i , —i (0).
011 = 1 g = ~2(d0  p® +dP - p) - AL, - ik - )

(a5 pg + gV sV ) AL, ik - el

~ (5 pi? +d? ) 4y iy - e PO)
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O12 =021 =21 €, =0
013 =031 =2l &3=0
Oy2 = A Epp + 21 &2
Opy = _[A.dgm © 4 A+ 2u)-d? éo)] AL ik - emiks(0)

— [A AP pP + (A +2p) - alV - ;1)] AT, - ik, - e~iks(@®T)

—[2-d?pP + G+ 2m) - dP pP] - Ay iy, - e @)

023 = 033 = 2[4 * &3
0 0 0 0 P —ik(p©.
023 = 032 = —Ii'(d; ) Pé ) dg ) Pg )) Agy - ks - e thes(pr)
u(ds? psY + sV g ) AL, ik - o)

2 2 2 2 . —i ).
.(dg>.p§)+dg) pg))_Ag_lkp_e ikp (p®-1)

O33 = A &y + 21 €33
0oz = —[2-d”  p{” + A+ 20) - dS” - p| - AL - ik - e PO)

[ d - p + 2wy - d” - pfP] - A ik - e )

—[2-a? pP + A+ - df? - pP| - Ay ik, - e Ko )
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Procedemos, al igual que en el caso cwhpo de deformacioneson las
sustituciones de las componentes del vector prepagalp) y direccion (d)

respectivamente por su expresion algebraica camelgnte, teniéndose que:

011 = —A(sin By - cos By — cos By - sin ) + AL, - ik - e~ ks(cosOoy+sinboz)

— A((—sinBy) + cos By + cos B, - sinBy) - AL, - ik

. . 1 1
- @~ tks(cos Boy=sinboz) _ (F -cos? 6y + <1 ek cos? 90)> A} - ik,

e_ikp((%.coseo)y_( A E— 90))Z>

05 = —[A(—cos 8, - sinBy) + (A + 2u)(sin @, - cos B,)] - AL, - iks
. e—iks(cos 6oy+sinByz)

—[A(cos By - sinBy) + (A + 2u)(—sin b, - cos Oy)] - A%, - ik

. ) 1 1
. g tks(cosOpy—sinboz) _ [A (1 — ﬁcos2 00) + (142w (ﬁ cos? 00>]

. .e—ikp<(%coseo)y—< 1—(%cos2 60)>z>

QTI.
Ay - iky

Oy3 = 03, = —pu(sin? By — cos? 0,) - AL, - ik - e~ tks(cos foy+sinbo2)

_ u(sinz 0, + cos? 90) AT, ik - e ~iks(cos 8oy —sinfoz)

1 1 .
—u 2<EC0590) —jl—(ﬁcoszeo) AL - ik,

_ik,,<(%coseo)y_( m))

- e
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033 = —[A(sin @y - cos By) — (A + 2u)(cos B, - sinB,)] - AL, - ik
. e—iks(cos 6oy+sin Byz)

— [—A(sin 6y - cos By) + (A + 2u)(cos B, - sinB,)] - AL, - ik

. . 1 1
. g~ tks(cosBoy—sinBoz) _ [/1 (ﬁ cos2 90) + (A4 2u) (1 - FCOS2 9())]

A ik —ikp<(%cos Ho)y—< ,1—(%c052 90)>z>
. p . l p . e

4.4.4 Célculo de las Amplitudes

El siguiente paso a llevar a cabo, consiste enrrdatar el valor de las
amplitudesAt,, A%, y A} respectivamente. Para ello, debemos considerao curas
las tensiones en la superficie libre; esto es:

x#0

VY punto {y # 0 se cumple — {
z=0

0-23:0
0-33=0

Otras consideraciones a tener en cuenta seran:

k
_ 5
K=

x| &

x| -
<

Ai‘vzl

Por tanto, comenzaremos copy = 0 para(z = 0):
0 = —[A(sin B, - cos By) — (A + 2u) (cos B, - sin B)] - AL, - ik - e~Hs(cosoy)
— [—A(sin 6, - cos By) + (A + 2u)(cos B - sinB,)] - AL, - iks

. 1 1
+ @~ iks(c0s8oy) [/1 (ﬁ cos? 00> + A+ 2w (1 — ﬁcos2 00>] - A},

—ikp<(%cos 00)y>

-lkp-e
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Tras una serie de simplificaciones llegamos a:

2u - (cos B, -sinBy) - iky — 2 - (cos @, - sinB,) - ik - AL,
— [A - cos® O, + (A + 2p) - sin® 6,] - ik, - A, =0

&  p-sin26, —p-sin26 - AL, — (A + 2usin®6,) - K- A, =0
. . . (2 - _ \
& sin26y —sin 26, - A%, — ;+251n 0,) K-A,=0 (2%)

Haciendo hincapié en’(2

y) A+2u 1\?
=—42-2= —2=<—) -2
I p

=~

Volviendo a (2):

1
= sin290—sin290-Agv—[ﬁ—2+251n262]-K-A{, =0

1
= sin290—sinZHO-AZ,,—[ﬁ—2+2(1—sin262)]-K-A§ =0

1
=3 sin290—sin290-AE,,—E-(l—ZKZ-coszez)-A{,=0
. r 1 2 2 r — of *
S stn290-A5v+E-(1—2K * c0s* 0,) - A}, = sin 20, (39

Pasamos ahora a operar egp = 03, = 0 para(z = 0):

0 = —u(sin? Oy — cos? O,) - AL, - ik - e~Hs(€0500Y) _ y(sin? O, + cos? @) - AT, - ik

. 1 1
- e~ iks(cosBoy) _ | 2 (Ecos 90) —\/1 — (ﬁ cos? 6y) | |- A} - ik,

e—il@((%cos 60)y>
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& 0=pu-(sin?0y —cos?0,) - iks — u - (sin? 8, — cos? 8,) - iks - AL, —
- (—sin @, - cos B, —sin b, - cos 6;) - ik, - Aj,
©  c0s26, - A, +sin26, - K - A, = —cos 26, (4"

Por tanto, hemos generado un sistema de dos enaadi@®) y (4)) a resolver;

dicha resolucion, se llevara a cabo utilizandoetyamaVMATLAB Asi:

1
sin26, - A%, + ra (1 —2K? - cos*6,) - A}, = sin 26,
cos 26, + A, + K - sin 20, - A}, = — cos 26,

—2K? - sin 20, - sin @, - cos 8, — cos 260, + 2 cos 26, - K? - cos? 0,
2K? - sin 26, - sin 6, - cos 6, + 2 cos 26, - K? - cos? 6, — cos 26,

r o —
AS‘V_

A = —2cos 26, - K - sin 260,
P 2K2%-sin26, -sinf, - cos B, + 2K?2 - cos 26, - cos 20, — cos 26,

Procedemos a realizar algunas simplificaciones:
En el denominador dé:
2K? -sin 26, - sin 6, - cos 8, + 2K? - cos 26, - cos 26, — cos 26,
& K?-sin26, - sin 20, + cos 20, - (—1 + 2K? cos? 6,)
& K?-sin26, - sin 20, + cos? 26,
En el numerador d4?,,:
2K? - sin 26, - sin 8, - cos B, + cos 260, — 2 cos 26, - K? - cos? 4,
&  K?-sin26, -sin 20, + cos 20, - (1 — 2K? - cos? 8,)

& K?-sin26, - sin 260, — cos? 26,
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En el numerador d&;:
—2cos 26, - K -sin 26,
& —K -sin46,

Finalmente, las expresiones finales de las amggude las ondas reflejadas
seran:

K? - sin 20, - sin 26, — cos? 20,

AT, =
SV K2 .sin 26, - sin 26, + cos? 26,

(3.1)

K -sin46,
K? - sin 26, - sin 26, + cos? 26,

Ay = (4.1)

A continuacion, representaremos mediante graficas elolucion que

experimentan estas amplitudes para un rango deegafi®d, comprendido entre 0° y
90°. Asi, tenemos que:

1.9

Onda SV reflejada
Parte Real —01 —o02

03 —04

0,5 A

0:0 T T T

=r
sy
]
[\~
=]
[

[ws]

40 50

Amplitudes /A1)

05 -

-1,5

angulo incidencia

Figura 4.4. Onda SV reflejada. Parte real.




Amplitudes /A1)

Amplitudes A1)
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1,5
Onda SV reflejada
Parte Imaginaria —01 —02
1,0 4
03 —04
0,5
[}:O T T T T T T T T
1] 10 20 30 40 ‘? 60 70 80 g0
-05 -
-1.0 1
-1,9
anaulo incidencia
Figura 4.5. Onda SV reflejada. Parte imaginaria.
1,5
1,0
0.5 1
5,
[}:O T T T T T T T T
1] 10 20 30 40 50 60 70 80 g0
-0.5 1 Onda SV reflejada
— 01 —02 Modulo
1.0 03 —04
-1,9

angulo incidencia

Figura 4.6. Onda SV reflejada. Mddulo.




Amplitudes /A1)

Amplitudes A1)
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5,0

Onda P reflejada

Parte Real —01 —02
40 -

03 —04

3,0

1.0 A |

ol )

-1.0

anaulo incidencia

Figura 4.7. Onda P reflejada. Parte real.

3,0

Onda P reflejada

2,51 Parte Imaginaria —01 —02

2,0 03 —04

1.5 A

0:0 - T T T T T T T

-1.9

angulo incidencia

Figura 4.8. Onda P reflejada. Parte imaginaria.
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5,0

Onda P reflejada
4,0 - Modulo

Amplitudes /A1)

-1,0

anaulo incidencia

Figura 4.9. Onda P reflejada. M6dulo.

Quedan aqui representadas, a traves de estasdagréliferentes valores de la
amplitud para la incidencia de una onda SV varidbhedichas graficas, se presentan la
parte real, imaginaria y el modulo para cada omdi@jada. Los resultados han sido
valorados en funcion del coeficiente de Poissolypoa@ango de valores varia entre
0,1 -0,4. En lo que se refiere al analisis de las grafiggsjemos observar las
variaciones que se producen en el valor de la &mpjpiara valores del angulo critico
(en funcion de cada coeficiente de Poisson), asboen las inmediaciones del mismo.
También pueden observarse los cambios de modo panégola onda SV como para la
onda P. decir que estos cambios de modo se proddtea partir de ciertos valores del
coeficiente de Poisson. Se entiende bien el cardbionodo en la respuesta de la
estructura visto el cambio en las amplitudes dehpmaincidente por encima y por

debajo del angulo critico.

4.4.5 Laonda SV y el angulo critico

Ahora se comentaran algunas “cositas” que hacenerefia a este tipo de onda
(SV) y lo que ocurre en las proximidades de la demidad del angulo critico. Asi,
diremos que:
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En el caso de que la onda SV incidente provocarafleljo de una onda SV y

una onda P rasante, implicaria que:
cosf, =1
sinf, =0

Por tanto, esto cor llevara que:
cosf, = —-cos0
2 K 0

& cosb, =K

Particularizando las expresiones (3.1) y (4.1) st caso concretor(da P

rasantg, ocurre que:

i = cos® 26,

SV cos?20,
K -sin46,
Ar=—— %0

p cos? 26,

Ahora se tendran en cuenta las siguientes simguifines:
cos 40, = 4 sin B, - cos B, - (cos? B, — sin? ;)
cos? 26, = (cos? 6, — sin? ,)?
Ademas, el hecho de ques 8, = K implicara que:
sinf, = m

De modo que:

sin46p = 4K - (v/1 - K2) - (2K? - 1)
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cos?26, = (2K* — 1)

Por tanto, tras realizar las simplificaciones nagas, las expresiones

particularizadas tanto de (3.1) como (4.1) quedeeduacidas a:

Agv =-1

_ 4K*V1-K?-(2K*-1)  4K*1-K?
P (2K2 —1)2 - 2K?2-1

Vamos a estudiar ahora el caso en el@ue€ 6., o cual nos obligaba a utilizar
razones trigopnométricas de caracter complejo; ehdele que el angulo de incidencia

6, sea menor que el angulo critge implica que:
cosf, > K

Lo que conlleva a que:

1
cos @, = I cosfy > 1 (singular)

1
sinf, = ii\]ﬁ cos? 6, —1 (imaginario puro)
Ahora introduciremos el valor dgn 8, y cos 6, en las expresiones obtenidas
paradyg, y A; anteriormente (expresiones (3.1) y (4.1)).

K? - sin 20, - sin 26, — cos? 20,
K? - sin 26, - sin 20, + cos? 26,

[ A—
AS‘V_

K? -sin 260, - 2 -sin@, - cos 8, — cos? 26,
K? -sin 26, - 2 - sin 6, - cos 6, + cos? 26,

[ A—
AS‘V_

+2K? - sin26, -+ c0s O+ |-5cos28,-11 — cos? 26,

L. cosf - /%cosz 60-11 + cos? 26,

x|

) A
AS‘U_

+2K? - sin 20, -

=l
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Se trata de un cociente entre dos complejos codfisgaonde:

. _ a+bi
SV a—bi
Donde:
a = cos? 26,
b = +2K? - sin 26, % cos 6 %cosz o1
Operando:

an (a+bi)-(a+bi)  a®-b? 2ba
S (a—=bi)-(a+bi)  a%?+b? aZ + b2

|AL,| = (a® = b?)? +4b%a® a*+2b%*a* +b* (a® +b?)*
svl = (a? + b2)2 T (@2+b2)? (a2 +b2)?

1

Lo que nos lleva a concluir que p#a< 6., se cumple que:

|A§v| =1
Por otro lado:
K - sin46,
Ap = —
P K?2 -sin 26, - 2sin 8, cos 8, + cos? 26,

K - sin46,

Ay = —

+2K? - sin 260, '%-cos 6o /%Cosz 60 L + cos? 26,
, K -sin 46,
Ay =

+2-sin 26, - cos B, - \/cos? B, — K? i + cos? 26,

Se trata de un numero complejo, el cual no vamosometer a mas
simplificaciones; por otro lado, podemos ver a qpé& de ondas conducen estas

expresiones. Para ello, recurriremos a las expresidel campo de desplazamiento:
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u=20
v=di AL, - e O 4 qD . ar, . ek 4 g pp . e~ (@E)

w=d® A, e—iks(p@r) 4 alv . ar, - o—iks(P®r) | e AT - o~ ikp(P®-1)
Donde:
AL, =1
Ay, Y A}, son numeros complejos.
0o < Oy
Por otro lado:

p©@ .r =p§0) -y+p§0) -Zz=-cosB,y +sinbyz

p(l)-r=p§1)-y+p§1)-z=cost90y—sin902
@ . =@ . @, , - — g
p r=p, cy+p; rz=cosb,y—sinb,z

Como puede verse, no hay ningan problemah-r y p® - r; en cambio,

existen inconvenientes con el término corresponéiara onda P reflejada. Véase que:

v d? . :
{ } — 2 . AZ, . e—tkp(cos 6,y—sin 6,2)
w dgz)

{U} _ { CcosS 92 }_Ar . e—ikp(cosezy—sinezz)
w —sin @, p

1
—cos6 ' |
K 0 A —lkp<(%-cos Bo)y—(il)(W>z>

+i-(—1)- \/1/1(2 cos2 6, — 1

Adoptaremos como solucion el valor negativo dedeepimaginarial—i) del

namero complejo; asi, tenemos que:
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{ %cos 0o 1

1 }.A;.e
] ﬁc05290—1

)

—ikp<(% cos 00)y+i ( ,% cos? 90—1>z>

—cos 6
% €05 G0

1 os2o— o1
L ) A; ) e"P( 70z €05 6o 1)2 ) e—lkp(icos Qo)y

1
Fcos2 6, — 1J

{::,}!J

. 1 k
Considerando que = k—s tenemos que:
P

{ %cos 0o 1

} A - o7 . gmillcosto)y
1
\/ﬁ cos? 6, — 1

)

Siendo:

1
§=kp-\/ﬁc05290—1 ER

Tras haber estado operando con las expresionesadglo de desplazamiento
con el fin de averiguar el tipo de onda que leesponde, se concluye que se trata de
una onda que se propaga en direccion dg $” (rasante), con desplazamientos en
direccion " y “z”, desfasado®90° y en amplitud complejal}, que decrece con la

profundidad segu&.

Finalmente y a modo de sacar una conclusién salreo dratar este tipo de

casos, diremos que se debera de consigéPay d© siempre como complejos para

casos en los qu& < 6.,. Dicho de otra forma:
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( 0 )
0 1/K-COSHO
p(z):[cosez}:< >
—sin @, : 2
i [=5cos“0,—1
LS J
( 0 )
0 1/K-COSHO
d(z):[cosez}:< \
—sin 6, \i FCosz 0, — 1J

Estas expresiones seran introducidas directamenl@sescuaciones del campo
de desplazamiento y, posteriormente, de la tensidviando la posibilidad de deducir
unas expresiones nuevas.

4.5 Onda Rayleigh

Partiendo del siguiente grafico inicial:

Movimiento de la

SN particula

AN/ GEEEAN

A z

Perfil de —

la onda
Direccion de

propagacion

Figura 4.10. Onda de Rayleigh. Gréfico explicativo.

Inicialmente, realizaremos una serie de suposisiose las expresiones del

campo de desplazamientos en virtud de lo reflegadel grafico. Asi, se tiene que:
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u=20
v=A-: ebz . elK(Ct—y)
w=RB- ebz . elK(Ct—y)

Ahora trataremos de comprobar que estas ecuacsatisgacen las ecuaciones

de gobierno de la Elastodinamica. Para ello, aniirs de la expresion de Navier:
G-Vu+(A+6)-ViVu) =p-ii

Particularizando para cada componente del campo desplazamientos,

obtenemos tres ecuaciones tales que:

c 62u+62u+62u fO+0) 62u+ 0%v N ’w\
0x? dy? 0z2 dx?  0xdy 0xdz) pru
c 62v+62v+62v L0106 0%u +62v+ ’w\
0x? 0dy? 0z? dydx = 0y? 0dydz) pv

c 62W+62W+62W L0406 0%u N 0%v +62W .
9x2 " ay? | 822 9z0x ' azay 9zz) PV

Calculamos cada uno de los términos expuestoseaxfaesiones anteriores:

Todos aquellos términos relacionados con la compeng del campo de

desplazamientos son nulos.

0%v — o
ox2
2
% = —Kz <A ebz . eiK(Ct_y)
y
0%v .
— = Dp2.A.ebz. pik(Ct-y)
0z2

d2%w B

O0x?
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2
a_V; = —Kz . B . ebz . eiK(Ct_y)
dy
0°w .
=ph2.B.ebz. elK(Ct—y)
0z2
62
550z = —iK-b-B.ebz.piK(Ct-y)
2
aaza‘l:]y =—bh-iIK-A- ebz . eiK(Ct_y)

Ahora sustituimos en la ecuacion de Navier padiczdda para cada

componente del campo de desplazamientos:

G(_KZA . ebz . eiK(Ct—y) + bZA . ebz . eiK(Ct—y))
+ A+ G)(—KZA .ebz . piK(Ct-Y) _ iKh. B . ebZ. eiK(Ct—y))

— _prA . ebZ . eiK(Ct—y)

G(_KZB . ebz . eiK(Ct—y) + b2B - ebz . eiK(Ct—y))
+ (A+ G)(—iKb - A - eb? - eiK(Ct=Y) 4 p2p . bz . oiK(Ct=Y))

— _prB . ebz . eiK(Ct—y)

Tratando de simplificar las expresiones, se tiare q
G(—K?A+ b2A) + (A + G)(—K?A—iKb - B) = —pw?A
G(—K?B + b?B)+ (A + G)(—iKb - A + b*B) = —pw?*B

Sacamos factor comun Ay B:

(—K?G +b?G —K?*(A+G) + pw?>)A—iKb(A+ G)B=0

—iKb(A + G)A + (—K?G + b?G + b*(A+ G) + pw?)B =0
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[b%2G — K2(A + 2G) + pw*]A — iKb(A+ G)B =0
—iKb(A+ G)A + [b?(A + 2G) — K?G + pw?|B =0

Buscamos una solucion al sistema diferente deiMelt(es decir, que Ay B
tengan valor nulo); por tanto, trataremos de colmgrgue valores de b provocan que

las expresiones anteriores sean nulas; por ello:

b%2G — K*(A + 26) —iKb(1+ G) _
—iKb(1 + G) b%(A+ 2G) — K%G + pw?|

Hallamos el determinante:
[b2G — K?(A + 2G)] - [b?(A + 2G) — K?G + pw?] — [iIKb(A+ G)]? =0

Dividiendo todo el determinante ppy se tiene que:

G A+ 26 A+ 6
02(6) - (129 4 o] a - ko (A5 5 =g
p p p

A+G A+ 2G G
o () a4 [ (RE29) - e (8) 0] =0
P p p

De modo que:
(b2C? - K?C} + w?)A — (iKb(C3 - C2)) B =0
(~ikb(cZ - €2)) A+ (b?C} — K*C? + w?)B =0
Asi:
(b2c2 + K2(c? = c2)) A— (ikb(C3 - €2))B=0 (1)

(—iKb(cg - Csz))A + (bzcg + K2(C? — CSZ)) B=0 (2
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Ahora volvemos a calcular el determinante:
[b2C2 + K2(C? - €2)] - [b2C2 + K2(C? — C2)] — K2b*(C2 - C2)* = 0

b*CZCZ + b*K?C2(C? — C2) + b*K?C2(C* — C2) + K*(C* — c2)(c* - )

— K2p2(C2 - C2) =0

b*(C2C3) + b2 |[K2C2(C? — €2) + K2C3(C? — 3) — K*(cZ - €2)]

+K*(C*-C2)(c*-CcH =0

Vamos a identificar términos a fin de obtener lakiGgones de b. Por ello,

tenemos que:
mb*+nb?+1=0
m = C¢C;
n=K?[c2(c? - cH+c3(c? - ¢Z) - (c3 - c2)’]
l=K*(Cc?-c2)(c?*-c?)
Operando enn”
n = K2[C2C? — C& + C2C? — ¢} — (€} — 2C2C2 + ¢2)]
n = K2[C2C? — 2C} + C2C? — 2C + 2C2C2|

Buscamos las soluciones d&'*

_ —KP[CC? —2C¢ + CJC? — 2G5 + 2C)CE +Va

bZ
2C2C32

Siendo:

a = K*(C2C? = 2C4 + C2C* — 2C} + 2C2C2)" — 4C2C2K*(C? — C2)(C? — C2)
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Por tanto, reubicando el valor d&’*

. —K?[C2C? + c2C? — 2C2C2] + KZJ[Cg(CZ —c2)-cz(cz-cp)]
Bl 2C2C2

Existen 2 posibles soluciones:

,  —KZ[C2C?* + CZC* —2C5C2) + K2[C2(C* - C}) — Cp(C* - C3)]
bi = 2C2C2

,  —Kk*[czc? + cic? —2cicz] - k[ (C* - ¢3) — Ci(C* - ¢cB)]
by = 2C2C2

Operando correctamente con las soluciones:

K?[-2C3C? + 2C3C2]
2C2C2

b2 =

K?[-2C2C? + 2C2C2]
2C2C2

b =

Volvemos a retomar el sistema de ecuaciqigy (2), teniéndose que:
(b2c2 + K2(c? = c2)) A— (ikb(C3 - €2))B=0 (1)
(—iKb(cg - Csz))A + (bzcg + K2(C? — CSZ)) B=0 (2

Tomando(1):

(b2cZ + K2(c? - c3)) - (ikb(CE - ¢2)) (g) =0
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Tomando las raices positivas de la solucion

Parab = by:
1
2

2(1-5 ) ez 4 k2(c? - c2)| - =SV - (B) =0
(1-g)arre-g)l-xlk(i-5) |G-@) F) -

2

1
c?\2 B
K?(C? — C?) + K?(C? — C2) — iK? (1 —§> (c2 - c?) (Z) ~0
S

N

_ c? B
K2C2? — K2C? — iK? (1 _C_§> (c2 - c?) (Z) -0

C?\? B
—K?(C? — C2) — ik?(C2 — C?) <1 - C—SZ> (Z) =0

C2\? /B
—1-i(1-=] (=)=0
l( C§><A>

Parab = b,:

C? B
[KZ (1 — C—5> CZ+K*(C? - Cg)l — iKb,(C2 —C2) (Z) =0

2

C B
K? <C§ — ? C—Z) + K2(C* = C}) — iKb,(C5 — C2) (Z) =0
p

2
N
C2

K? ICSZ - c?
4

B
+ C? — C%| - iKb,(C%2 — C? (—)=0
Pl l 2( 14 5) A
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oF: B
K?|—(Cc2—-c?)+c? <1 _C_:%>l — iKb,(C2 — C2) (Z) =0

2 2

C2-cC B
—-K2(C3 —C2) + K262< — 5> — iKb,(C} — C2) (Z) =0
D

2

c: (B
_K+KC_5_lb2(Z>:O

B _ p
A —ib, —ib,
CZ
2 _ =
(B) _K (1 Cﬁ) b2 b,
A),  —ib,K  —ib,K K
(3),= &
Al, iK

Por tanto, podemos concluir que existe una relaeittne las amplitudes que
depende de los valores de que aportan una solucién al problema diferentdade
trivial. Ademas, garantizamos con ello que las esijones del campo de

desplazamientos satisfacen las ecuaciones de pgobide la Elastodinamica,

obteniéndose que:

u=20
v = A1 . eblz . eiK(Ct_y) +A2 . ebZZ . eiK(Ct_y)
iK | b, |
w=—: A . eblz . elK(Ct_y) _——_— A . ebZZ . elK(Ct_y)
b, iK “?

4.5.1 Célculo de las amplitudes

Ahora aplicaremos condiciones de contorno en leersigpe (ai]- = 0). Esto

conllevard lo siguiente:
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x#0 Gy =0
V puntoiy # 0 _
z=0 (G==0

Oy; =2 &, =0
Opz = 20" €z + A+ € =0

Siendo:

_ 1<6v+ 6W>
2= 2\az " 3y

ow
Ez7z = g

_ <6u N v N OW)
ek =\ox " ay ' 9z

Calculamos las derivadas:

au_au_au_av_aw_
dx dy 0z 0x Ox

g_; = —iK(A; - eP1% + A, - eP27) . K (Ct=Y)
a_W = lK A eblz —_ b_% . A ebZZ . eiK(Ct_y)
0z 1 iK *?

dv .

& — (bl . Al . eblz + bZ . AZ . ebzz) . elK(Ct_y)

ow KZ b b iK(Ct—

E: b—.Al.elz+b2.A2.eZZ .el( y)
1
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Ahora pasamos a realizar la sustitucion de lasvaésais en las expresiones
anteriores:

_5 1(61} 6w> 0
Tyz = 21" 3\8z " oy

S Oy, = [(bl cAy-eP1Z + b, - A, - eb2?). elK(Ct-y)

K? .
+ <b Ay -eP % +b,-A,-eP > -e‘K(Ct‘Y)l =0
1

KZ
{—t bl'Al'eblz+b2'A2'ebzz+b_'A1'eblz+b2'A2'ebzz:O
1

2

b, - A 1 K 2:b,-A baz =
(= 1 13 +F+ *Up 2'6 -

KZ
(= bl'A1'<1+_2
bl

>+2'b2'A2:0 (1*)

aw (au v 6w>

0z ox 6y dz
: b1z b% byz iK(Ct-y)
S 0, =2uliK-A;-e"t —W-Az-e e + A

bZ
¢ [_iK(Al ¢ eblz +A2 ¢ ebzz) + <lK ¢ Al ¢ eb - é AZ e )l

eiK(Ct—y) =0

b3 b3
& 2uliK-A;-e"? T Ay -eP2? |+ A —iK-A,-eP _W Ay -eP2? | =0

. b b% b . b,z b2
& 2IK-Aj-u-e 1Z—2§-A2-u-e 22 —iK-A,-A-e"?* T Ay-1-eP2%2 =0
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iK iK

b3 b2
(ZiK-u-eblz)-Al—<2—2-/1-ebzz+iK-/1-ebZZ+_—2-/1-ebZZ>-A2=O

2 2

. bz b2 b2 . bz
& 2K-pu-e’?-A - —2ﬁu+i—ﬁl IK-e’2%-4,=0

b1z b% b,z
[— 2#'61'A1+ F(Zﬂ‘l‘/’{)_/’{'ez 'A2:0

K? K?

b bj LAY
& 2pure? A+ |25 —A(1—-=]|-e?*-A, =0

b3 b3 .
2 At |2pe S = A 1-35 )| 4. = 0] @)

Trabajando corf1*) y (2%):

. Cc
Slys:C_Sz YV =

KZ
b1

b2 b2\~

C .
— , entonces se tiene que:
C

K? 1 1
b 1-C., 1=

b2 c?
ﬁ=1—c—5 1=
! ) 2b

1_)/5 2

=0
2u(1—y,)—2(1-1+y)
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2—]/5
b ( ) 2b
=3 "1 -y, 2 =0
2u 2u(1—vp) = ¥

b,
(2 _ys) zb_(l _ys)
& (1- YS)_l “byp- ! yl =0
2 2(1-y) o

2 b,
o @) [20-n) |4 a-w=0

12 término 22 término

Ahora trabajaremos con los dos términos de estaaikxpresion por separado,

con el fin de simplificar la expresion final. Primenente, por un lado:

A
2(1 - Vp) - ;Vp

Donde:
cz==
S ) l A_C,%—ZCSZ
t P A+2ﬂ ‘u Cz
C; = J s
p
A C,? 5 ond Cg 1
L —_—= —_— _— .« —_
P c2 siendo c2 Vs -

Por tanto, volviendo al 1° término de la ecuacion:

A
2(1 - Vp) - ;Vp

Y.
PN 2(1—yp)—<i—z>yp

A 2(1 - Vp) - (Vs - ZVP)

e 22y Vst 2/p=2—Ys
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Por otro lado, tenemos el 2° miembro de la ecuaaiderior:

1 *
Donde:

ﬁ (1 yp)_
b1 (1_]/5)2

Volviendo al 2° término:

b,
4b_1 (1 - YS)

4(1 - Vp)% : (1 - YS)%

Finalmente, volvemos a rescribir la ecuacion de orope:

1 1
(2-v¥)%— 4’(1 - yp)z (1-y)z2=0
La cual denominaremacuacion caracteristica

Por tanto, el sistema de ecuacioneg gdg A, quedaria como:

KZ
b1<1+ﬁ>'141+2b2'142 :0
1

b2 b2
kZM-Al lzuﬁ—z(1 +K2>l Ay, =0

1 1
{(Z—VS)-Al+2(1—yp)2-(1—ys)f-A2 = 0
2'A1+(2_VS)'A2:0

Si consideramos que el valor de la amplitud dentdaacde Rayleigh incidente es

de valor unitario, obtendremos el valor4le




Ecuaciones de propagacion de las ondas sis

1 1
@-y 14201 -p) (-t A2 =0, |y o - )
2-1+(2—-y)-4,=0 2—Ys

Por tanto, a modo de tratar de

generalizar lasesiges del campo de
desplazamientos:

u=20
v= (dgo) cAg -ebr? 4 dgl) A, - ebzz) e Ky
w= (dgo) cA; - e? 4 dgl) ‘A, - ebzz) . e Ky
Donde:
Paradk, = A;:
0 ;(0) ng) =1
0) (0 .
d(O); (0, dZ ,d3 ) d(O) _ z
3 bl
Parady, = A,:
n 4@ dgl) =1
d®: (0, dy”’,d; ) 4D = _ﬁ
3 iK

También se conocen los valoresbdey b,:

blzK' 1_]/5 bZZK"]._'yp

Volviendo a rescribir las ecuaciones del campo dspldzamientos donde
aparecen todos los términos sustituidos, se tiaae q

u=20

(

j v =4, . o~ K(y+(iy1-7s5)z) + A, - e—iK(y+(i\/1——yp)z)

(i) a0 T 4 (i [1= 1) 4, - e KO+
lw_<l w/l—ys> Ay eT T +<l 1 y”) Az e ’
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4.5.2 Campo de deformaciones

Partiendo de la expresion que hace mencion al temso pequefias

deformaciones:

1
€j =5 (ugj + )

Calcularemos cada uno de los términos del tensateft'maciones para este

tipo de onda, el cual obedece a la siguiente disipos

0 O 0
gl] = (O 822 523>
0 &3, €33

Asi, calculamos cada término por separado:

e, = Z_; _ ik ( 4, - e KOHWTT) 4 4, . oK+ /_1—]/p)z))

ow
£33 == (K1/1—ys)<i —
S

+ (1{\/1 —~ yp) (i\/l —~ yp) - Ay - e KO+ (/T)2)

> C A, - e~ KOH(I1-¥5)2)

& gy = iK Ay - e KOHW1-¥5)2) 4 iK(1—y,) -4, - o~ K(y+(i/T=vp)z)

1/0v dw
s = e =3 (5, 3y)

Ey3 = €35 = %I( 1—y, + \%) A, - e KOHIT%)2) 4 <2K /1 - )/p) - A,
oK (i /_l—yp)z)l

Exk = €11 + &2 T+ €33
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g = —iKA; - e—iK(y+(i1/1—y5)z) — iKA, - e—iK(y+(i [1=vp)z) + KA, - e—iK(y+(i1/1—ys)z)
+iK(1—y,)4; - e~ K(r+({T=7p)?)

& g = —iKAy - e KO ik (1 —y,)4, - e KO+E/T71)2)
4.5.3 Campo de Tensiones

Para llevar a cabo la obtencién del campo de teasjchemos de recurrir a la

expresion de la ley de comportamiento del matdaalyal establece que:
O'i]' =2.u'£i]'+l'gkk'6ij
Donde:

Por lo que respecta al tensor de tensiones, témdrguiente disposicion:
o1 O 0
Oij = < 0 02 023>
0 o3 o033

Calculamos cada uno de los términos del tenscerdstianes:
01 =210+ A = A+ | (—iK +iK(1—y,)) - A, - e KOHT7)7)|

o2z = 20 K (4 - KOG 1 4, o KO+ 4 2
|(-ik + k(1= 1,)) - Ay - e KO

033 = 2U - [iK (A1 - e~ KOH(i17r5)7) 4 (1-y,) 4" e"iK(yJ'(i\/l__”P)Z))] + 1
(K +iK (1= 7)) - Ay - 7O
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Op3 = 2/ -

N =

(K 1T—y, + L) Ay - emKOH(I1r)z) 4 (21{ /1 -~ yp) - A,
1- Vs

. e—iK(y+(i [1=vp)z)

K . .
S O3 =03 =U [(K 1-vy+ T Ys> cA; - e KOH(I/1s)2) 4 (ZK ’1 - yp>
A, e—m(w(m——ma]

Por ultimo, aplicaremos el valor de las amplituddas expresiones del campo
de deformaciones y de tensiones respectivamenteldom de afrontar el ultimo paso,
el cual sera la obtencion de la parte simétricanfgsimétrica de los campos de

desplazamientos, deformaciones y tensiones regpetite.
Asi, se tiene que:

e = cosfh +isin6

e % =cos@ —isin6
Donde:
Parte simétrica:
o0 1 o=if
COoS 9 =
2
Parte antisimétrica:
pl0 _ p—if
sin@ =
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Si se considera que= iKy, entonces:

” ele + e—le
COSLRY =

2
e—le _ ele

siniKy = >

Ahora volvemos a rescribir las expresiones del cadgdesplazamientos con el

fin de obtener las componentes simétrica y antisio@respectivamente.

( u=20
v=A4A;- e~ iK(y+(iy1-v5)z) 4 A, - o~ Ky +(iyT-7p)z)

|
4 ;.1 Ay e K0T 1 (5. 1 =) - A, - e EKO+H(E/Tp)2)
lw_<l w/l—n) Ay TR +<l V! y”) Arve ’

Partiendo de las anteriores expresiones del campodesplazamientos,
obtendremos lo siguiente:

iK —iK
Vg = (Al . e(K\/l_Vs)Z + AZ . e(K\ll_Vp)Z) . (#)

vo = (A (VT 4 4y - (ST ($>

1
= (- A e®TYZ L (1 1 =) A, - KT W)z
= (1) e (- [ e

eiKy + e—iKy
. < 2 >

1
= (i- A e @Yz L (i 1= ) 4, - eEST W)z
O (e R e O e R

e—iKy _ eiKy
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Para obtener las componentes simétrica y antiscaétte los términos del
tensor de deformaciones y del tensor de tensioesgsectivamente, se aplicaran las
expresiones del tensor de pequefias deformacionesrase la ley de comportamiento
del material sobre las componentes simétrica ysiamétrica del campo de

desplazamientos que se acaban de obtener.

4.6 Coordenadas generales

Hasta ahora hemos obtenido las ecuaciones para tipdaP, tipo S y Rayleigh
considerando que la direccion de propagacion derldas esta siempre contenida en un
plano vertical. Vamos ahora a considerar el casel gne las ondas puedan propagarse
en cualquier direccion del espacio. Para ello,othiciremos un nuevo angulo

(angulo ¢), tal que:

Il
ol

z

Presa .z

—_— =

Do ‘
x(i1) \

y(iz)

‘ x(&)

-

y(z)

N
1]
N
D
o

Figura 4.4. Gréfico aclaratorio

La inclusién de este nuevo angulo de incidencia, lleva a introducir una
matriz de giroR, la cual se compone de las proyeccionexdg) y y(i;) sobre los

nuevos ejes de referenaiéi,) y y(i,). De este modo, se tiene que:
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cos@, sing, 0

i
|2
L

R = —sing, cosp, O

0 0

I
iz =
i3

Asi, tomaremos como ejemplo de aplicacion las eskpnes deducidas para la

onda SH y obtener las nuevas expresiones del cdmpesplazamiento, deformacion y

tensidn respectivamente. Partiendo de dichas erpess conocidas y considerando
también que:

i _
sh —
roo_
sh —

Vamos a tratar de obtener el nuevo campo de desplaatos para este tipo de

ondas (SH); para ello, recordaremos las expresiahesucidas anteriormente,
teniéndose que:

= (5, 0,0) = 4O - o) 1 GO (=iks(p7)

1 1
40 = {0} 4d = {0}
0 0

0 0
p@ = [cos 90} pv = [ cos 0, }
sin 6, —sin 6,
Aplicamos ahora la matriz de giro al campo de agesphientos:

R-ii=R-dO.-iks(@?7) x p.qQW . g=iks(FV-7)

Haremos un paréntesis en la deduccion del nuevpaal®a desplazamientos a

modo de aclarar el producto esca(lﬁ?") -f), de modo que:

NI IR
—
Il
= S
N/:r—\

PO 5= (p® O péi))-[
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o (RUpD) R =(p®) R THT.RL.y
& R '=RT conlocual (R"HT =R
s (D) r=p®.r
Por tanto, volviendo a la expresion del campo dpldeamientos:
R-ii=R-dO.-iks(@?7) y p.qW . g=iks(F®-7)

u = (u,0,0) = d©@ . e=iks( V1) 1 g . g=iks(p 1)

Siendo:
; [ cos@y singg 0] [1] [ COoS®q
d® =R-d® =|-sing, cosp, 0| [0[=]—sing,
0 0 1 tol t O
3 [ cosgg singy 0] [11 7 €OS®q -
d® =R.-d® =|—sing, cosp, 0f-|0|=|—sing,
0 0 1l tol t O
cos@p, sing, 0 0 sin ¢ - cos 0,
p@ =R-p©® =|—sing, cosg, 0" [cos 90] = [cos @, - cos 90]
0 0 1] Lsing, sin g,
cos@p, sing, 0 0 sin ¢, - cos 6,
p® =R-pM® =|-sing, cosg, Of- [ cos 6, ] = |cos ¢, - cos 91]
0 0 11 L—sin6, —sin 6,

Por tanto, y recordando qué; = 6,, se obtiene el nuevo campo de

desplazamientos en funcion de las coordenadasajesier

Uy = U= COS Qg - e—iks(sin(po cos Bpx+cos @q cos Bgy+sinHyz)

+ cos @, - e—iks(sin ®o cos B1x+cos @y cosB;y—sin ,z)




Ecuaciones de propagacion de las ondas sism

Trataremos ahora de obtener la componente simétacaisimétrica del campo

de desplazamientos. Para ello, partiremos de leesiXm:
Wiy, g, ) = O - = HOEOT) 4 gD kO ED) 1 gD . o=k )

Un dato a tener en cuenta seré el de considepdared de simetria; para nuestro

caso, dicho plano sepdano xz (x4, x3).
Considerando la simetria del problema, se parte de

o-ik@(p®-r) _ =ik D (p{Pxtp{z) =ik (pf-y)

I _lkmpg).y_I_eik(i)pgi).y
lk(l) o, 493/(‘) = >
i) =
les = .

ey, (i) = e )
XZ -

Siendo:

ey (i) ~» componente simétrica
ey (i) ~» componente antisimétrica

Dependiendo de la componente del desplazamientoagre estemos trabajando
(u, v,w), se deberd emplear uno u otro término para lacdédlu de la componente

simétrica o antisimétrica respectivamente.
uf = d{ e, (D) - (D) + AV - AT, - e, (D) - e5() + AP - AL - e, (D) - e5(0)

=d e, (i) e2(i) +dM - AT, - ey (i) - e2(0) + dP - AL - ey, (1) - e2(0)
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Especificando las expresiones para el caso dedia 8Hl, tenemos que:

e—iks(cos @0 cosByy) + eiks(cos ®o cos Byy)

2

uis‘ = cos @, - e—lks(sm(po cosByx+sinfyz) I

4 cos @, - e~ HKs(sin@o cos B1x—sin 612)

e—iks(cos ®oCcosB1y) + eiks(cos ®oCcosB1y)
2

e—iks(cos @ocosByy) _ eiks(cos ®o cos Byy)

2

uil = cos @ - e—lks(sm(po cosByx+sinbyz) I

+ cos @, - e~ tks(sin@o cos B1x—sin 612)

e—iks(cos @ocosby) _ eiks(cos ®oCcosB1y)
2 l

Por lo que respecta al célculo de las tensionedirggaos también de las

expresiones deducidas anteriormente, teniéndoseesma que:
O-ij = 2[1'£ij+/1'£kk'5ij
Siendo:

Exie = €11 T €22 + €33

1
&j =5 (uij + )

El primer paso que llevaremos a cabo sera el dmilealel nuevo campo de
deformaciones, el cual tendra el siguiente tensatedormaciones:
€11 €12 €13

E = 821 O 0
&1 0 0
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A continuacion, trataremos de obtener cada unoodetdrminos del tensor,

especificando su componente simétrica y antisicegtespectivamente:

Jduy N .
€11 = o = cos @, - e—lks(sm(po cos Byx+cos g cos Byy+sinbyz) |, (—iks) . (sin ®o COS 90)

+ cos @y - e—iks(sin @o cos B1x+cos @gcosB,y—sin H,z)

- (—ikg)(sin @, cos 6;)

ou;
F-ha— =
11 Ox

a
i ouf
11 Ox

—ikgs(sin g cos 8px+sin6yz)

= cos @, * (—iks)(singycosB,) - e

e—iks(cos @ocosByy) _ eiks(cos @0 cosByy)
> + cos @

—ikgs(sin g cos 6;x—sin 6,2)

- (—ikg)(sin@ycosO,) - e

e—iks(cos @ cosBiy) _ eiks(cos ®oCcosB1y)

1
€12 = 2 (ul,z + u2,1)
1
= 5 [Cos Qo€

- (—iks)(cos @, cos 6,) + cos @,

—ikgs(sin @g cos Byx+cos @q cosByy+sinHyz)

. e—iks(sin(po cos 81 x+cos g cosB,y—sinb,z) , (

—ik)(cos @, cos8,)]
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1o0u; 1 o .
12 = 55y = 3 |COS Do €TI0 OSTIIND) - (k) cos g cos Bo)

'e—iks(cos @ocosByy) _ eiks(cosq)o cosByy)T

2

+ cos @,

. e—tks(sm @ocosBix—sinb,z) , (—iks)(COS ®o COS 91)
'e—iks(cos @ocosbiy) _ eiks(cos @0 CcosB1y)]

2

— 1 au? — 1 —iks(sin ¢g cos Byx+sin6yz) ;
&2 =3 3y "2 Cos Qg - e + (—iks)(cos ¢, cos B,)

'e—iks(cosq)ocoseoy) + eiks(cosq)o cosBpy)T
2

+ cos @,

. e—iks(sin(po cosO1x—sin6,z) , (—iks) . (COS ®o COS 91)
'e—iks(cos ®ocosB1y) + eiks(cosq)o c0s61Y)]
2

1
€13 = 2 (u1,3 + u3,1)

1 s .
— —-ik Oox+ Boy+sin 6 ; :
E[COS ©o e iks(sin @ cos Opx+cos @g cos Ogy+sin6yz) (—lks)(SIIl 90)

+ cos @y - e ~Lks(sin@q cos 61x+cos g cos 6, y—sin6,z) , (—iks)(— sin 91)]
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s 1 auf 1 : ; —iks(sin ¢g cos Byx+sin6yz)
£z = 53, -2 cos @q * (—iks)(sin @) - e~ s 0 0 0
'e—iks(cos ®ocosByy) + eiks(cosqoo cosByy)T
> + cos @,
. e—iks(sin @ocosB1x—sinb,z) , (—iks)(— sin 01)
'e—iks(cos ®ocosBy) + eiks(cosqoo c0s61Y)]
| 2
louf 1 o .
Silg -1 _ - cos @y - (—iks)(sin 90) . e—lks(sm(po cos Bgx+sin 6yz)
20z 2

e—iks(cos ®ocosByy) _ eiks(cos ®o cos Byy)

2

l + cos ¢, * (—iks)(—sin6;)

e—iks(cos @ocosBiy) _ eiks(cos @ocosB1y)

2

. e—iks(sin(po cosf1x—sin6,z) , I

£y = E33 = &3 = €3, =0

Ekk = €11 T €22 T E33

= oS @ - e—iks(sin @o cos Byx+cos g cosByy+sinyz)

+ (—ikg)(sin @, cos 8,) + cos ¢,

—ikg(sin ¢g cos 6,x+cos @ cos 0, y—sin6,z) (—ik

‘e 5)(sin @ cos 6;)
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Ahora trataremos de introducir las expresiones haeen referencia a los

términos del nuevo tensor de tensiones, el cuakpta la siguiente disposicion:

011 012 013
o = 021 O 0
o337 O 0

O1p = A &+ 20 €14

—ikg(sin ¢g cosByx+cos @g cos Bgy+sinbyz) |, (—ik )
s

o011 = (A+2u) (cos Po-e

. (sin ®o COS 90) + cos @y - e—iks(sin @o cos B1x+cos @gcosB,y—sin 6,z)

- (—iks)(sin @, cos 91))

—ikg(sin ¢g cos Bgx+cos g cos Bgy+sinbyz) (—ik ) .
s

o1 = ((A) - COS Qg+ e (sin ¢, cos 6,)

+ (/1) - COS @ - e—iks(sin ®o cos 01x+cos @y cos B,y—sin 6,z)

- (—ik)(sin @, cos 91))

—ikg(sin @g cos Byx+sin6yz)

+ 2u <cos @Yo+ (—ikg)(singgcosby) - e

'e—iks(cos ®o cos Byy) + eiks(cos ®oCcosBpy)T
2

+ cos @

. (—iks)(sin @ COS 91) . e—iks(sin ®o cosBi1x—sinbz)
'e—iks(coswocosely) + eiks(cosgaocosely)'
2




Ecuaciones de propagacion de las ondas sis

—ikg(sin ¢g cos Bgx+cos g cos Bgy+sinbyz) |, (—ik

oi1 = ((A) "COS@Pp - € s) * (sing, cos,)

+ (ﬂ.) - COS Qg - e—iks(sin ®o cos B1x+cos @y cos B;y—sin,z)
- (—ik)(sin @, cos 91))

+2u (COS ¥ - (—iks)(sin ®o COS 00) . g~ tks(sin g cos Bpx+sin 6o z)

[e—iks(cos ®ocosByy) _ eiks(cos ®o cos Byy)

> l+cos<p0

. (—iks)(sin ®o COS 91) . e—iks(sin ®o cosB1x—sinbz)

[e—iks(cos ®ocosB1y) _ eiks(cos ®o COS Gly)l>

2

S _ S _ —ikgs(sin @g cos Bgx+cos @y cosByy+sinHyz .
0'12 e 0'21 = ((A) « COS (po - e S( Po 0 Do oY 0 ) . (_lks)

—ikg(sin @g cos 81x+cos @y cos 61 y—sin 0,z)

- (singg cosBy) + (1) - cos g, - e

- (—iks)(sin ¢, cos 91))

—ikg(sin ¢g cos Bgx+sin 6yz) |, (

+ p|cospy-e —ikg)(cos ¢, cos 6,)

'e—iks(cos @ocosByy) _ eiks(cosqoo cos6gy)T

2

+ cos ¢,

—ikg(sin g cos 6,x—sin6,z) , (

e —ikg)(cos ¢, cos ;)
'e—iks(cos @ocosbiy) _ eiks(cos @0 CosB1y)]

2
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a _ .~a _ —ikg(sin cos Bpx+cos cosByy+sinfyz .
0’12 = 0'21 e ((A) *« COS (pO - e 5( Po 0 Po oY 0 ) . (_lks)

—iks(sin @g cos 8;x+cos @y cos B;y—sin0,z)

- (singg cosBy) + (1) - cos g, - e

- (—iks)(sin @, cos 91))

+ ulcos g - e—iks(sin(po cos Bgx+sin6yz) |, (—iks)(COS @ COS 00)

[e—iks(cosq)ocoseoy) + eiks(cosq)o cosByy)

> l+cos<p0

. e—iks(sin(po cosO,x—sin6,z) , (—iks) . (COS ®, COS 91)

e—iks(cos ®ocosBy) + eiks(cosq)o cos6,y)
2

S _ S _ —ikgs(sin g cos Bgx+cos @y cosByy+sinHyz .
0'13 = 0'31 = ((A) « COS (po . e S( Po 0 Po oY 0 ) . (_lks)
. (Sil’l ®o COS 90) + (/1) - COS @ - e—iks(sin ®o cos 01x+cos @y cos 8;y—sin 6,z)

- (—ik)(sin ¢, cos 91))
+ ulcos g - (—iks)(sin 90) . e—iks(simpo cos Byx+sin6yz)

'e—iks(cos ®ocosByy) + eiks(cosqoo cos6gy)

2

+ cos ¢,

. e—tks(sm @ocosBix—sinb,z) , (—iks)(— sin 91)
'e—iks(cos ®ocosBy) + eiks(cosqoo c0s 61Y)]

2
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a _ .a _ —ikg(sin cos Bpx+cos cosByy+sinfyz .
0’13 = 0'31 e ((A) *« COS (pO - e 5( Po 0 Po oY 0 ) . (_lks)

—iks(sin @g cos 8;x+cos @y cos B;y—sin0,z)

- (singg cosBy) + (1) - cos g, - e

- (—iks)(sin ¢, cos 91))
+ ulcos g - (—iks)(sin 90) . e—iks(sin @0 cosByx+sinbyz)

e—iks(cos @ocosByy) _ eiks(cosq)o cosByy)

2

l + cos ¢, * (—iks)(—sin6;)

—iks(cos@gcosO1y) _ eiks(cos ®o cosB1y)

2

. e—iks(sin @oCcosBix—sinbz) , Ie

4.6.1 Expresiones generales

De un modo mas general, introduciremos las expresiaecesarias para llevar a
cabo el calculo del campo de desplazamientos, meftiones y tensiones para
cualquier onda que pudiera propagarse en cualqdieeccion del espacio

(Inclusion del nuevo angulo ¢).

No obstante, primeramente debemos de hacer hinaapiéas expresiones
referidas a los vectores direccion y propagaciantct uno como el otro, deberan estar

expresados en funcion de las nuevas coordenadasags) o que implica que:
d® =R.di
p® =R .5
Siendo:

pt y d! las expresiones del vector propagacion y del vetiteccion para una

onda contenida en un plano perpendicular al plansirdetriaxz).
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46.1.1 Campo de Desplazamientos

A modo de aclaracién, primeramente seran dedutadaesxpresiones del campo
de desplazamiento, tanto para el caso simétricaoquema el caso antisimétrico para,

posteriormente, proceder al célculo del tensor diorchaciones y del tensor de
tensiones respectivamente.

46.1.1.1 Caso simétrico

n
uf = D AAD - & - e (D) - eys(D)
i=1
n
u§ = " AAWD - 4 - e, (D) - eyaD)
i=1

n
u§ = D AAD - 4 - e (D) - eys(0)
i=1

Siendo:

n: el nimero de ondas que intervienen en el andlisigdentes y
reflejadas).

AA(i): amplitud de las ondas que intervienen en el sisalionde:

AA(1) = Sh incidente AA(1) = Sv mctd?nte

Sh {AA(Z) _ Shreflejada Sv{AA(2) = Svreflejada

B J AA(3) = P reflejada

AA(1) =P made.ante AA(1) = Ra incidente

P{ AA(2) = Preflejada Ra {AA(Z) _ Rareflejada
AA(3) = Svreflejada B J

d®: vector direccién de propagacién, cuyos términoseseuentran

expresados en funcién de las coordenadas genekalesenemos que:
exz(i)

e (l) — e—ik(i)(pgi)-x1+P§i)-x3)
XZ




Ecuaciones de propagacion de las ondas sis

eys(i)

e—ikips %2 giky s
2

eys(i) =

eya(i)

e—ikj-pgl)-xz _ eikj-pgl)-xz

2

€ya @ =

4.6.1.1.2 Caso antisimétrico

n
uf = > 4D - 4P (D) - ey0(0)
i=1
n
ug = 3 AAWD - 4 ey (D) - 5D
i=1

n
ug = 3 AW - 4 ey (D) - 30 (0)
i=1

Donde el significado de cada término quedo especiti con anterioridad.
4.6.1.2 Campo de Deformaciones

4.6.1.2.1 Caso simétrico

El primer paso sera obtener cada una de las desvatkl campo de
desplazamiento, para después poder obtener las ooemges del tensor de
deformaciones de manera inmediata. De modo que:

aui

]

dus(1,1) = Z A9 p@ - (—ik®) - ey, (D) - eys (i)




dus(12) = ) df’
du(13) = ) d
dus21) = ) dff
du(22) = ) df
du(23) = ) dff
w31 =) df
dus(32) = ) dff

dus(33) = ) dff

Dondee,, (i), e,s(1) Y ey, (i) tendran la mismas expresiones que las deducidas

anteriormente.

pD

pl)

®

.pl

pl)

®

.p3

p®

O]

"D,

pD

4.6.1.2.2 Caso antisimétrico

dut(1,0) = ) d
dut(12) = ) df’
dut(13) = ) d
dut2,) = ) df’

du22) = ) df

p®

D

pD

D

pl

o).
o).
o).
o).
).
o).
o).

(—ik®) -

).
o).
o).
o).

(~ik®) -

exz(i) :

exz(i) :

exz(i) :

exz(i) :

exz(i) :

exz(i) :

exz(i) :

exz(i) :

exz(i) :

€xz ('—) :

exz(i) :

€xz ('—) :

exz(i) :
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eya (i)

eys(i)

€ya (l)

eys(i)

eya(i)

eys(i)

eya (i)

eys (1)

eyq (i)

eys (1)

eyq (i)

eys (1)

eya(i)
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dut(2,3) = Z 49 - pD - (—ik®) - ey, (D) - eys (i)
a — @, @ (DY, i . i

du®(3,1) = d;y” - p, ( ik ) exz (i) - eyq (i)
a — @, @ (@Y. N . i

du®(3,2) = Z d;” - p, ( ik ) exz (1) - eys(i)

dus(33) = Z A9 pD -+ (—ik D) - e, (D) - eyq (i)

Finalmente, introduciremos las expresiones geeemlie hacen mencion a los
términos del tensor de deformaciones, de modo que gada tipo de onda quedaran

particularizados cada uno de esos términos. Asnes que:

4.6.1.2.3 Caso simétrico

N

o =24 s
511—ax— u®(1,1)

s o 10w 0u;
fl2= &1 =5 dy * Ox

) = %(dus(l,z) +du®(2,1))

S
s 0u;

€22 = dy

= du’(2,2)

s s _1<6uf ou;

1
— - s s
€3 = &1 =5( 5, + ax> > (du®(1,3) + du®(3,1))

S
ou;

£33 = Fya du®(3,3)

4.6.1.2.4 Caso antisimétrico

Las expresiones para el caso antisimétrico seralogas que para el caso

simetrico con la unica salvedad de qlg; = du;’;.
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4.6.1.3 Campo de Tensiones

En lo referido a la obtencion del Campo de Tenspmecurriremos a las

siguientes expresiones:

4.6.1.3.1 Caso simétrico

Oxx = 2 Exx + A+ Exg

Opy = 2l &y + A+ Egi

Opz = 201 &3, + A &k
O-fcgy :O-;x :2/1'55231 ZZM'S;x
Oxz = Ogx = 2|1~ Ex7 = 2L~ €34
Opy = Ozy = 2U+ &, = 2l + &,

4.6.1.3.2 Caso antisimétrico

Oxx = 2 Exx + A+ Exg

Oy = 2l &gy + A+ Egi

Ozz = 2U &z + A &g
O-)(cly :O-;/lx :2/1'59(6131 :2/1'53(})6
Oxz = Ogy = 2|1 Ex7 = 2[L* €7y

a — .0 — a — a
O-yz_o-zy_z.u'gyz_zll'gzy

Una vez obtenidas las expresiones generales quen hesferencia a la
propagacion de las ondas desde un angulo de imiéddgeneral (situado fuera de un
plano perpendicular al plano de simetria de lauetra), trataremos en el siguiente
capitulo de analizar algunos de los factores queossideran claves en la respuesta

sismica de una estructura.




5 Resultados

51 Introduccion.

A lo largo del presente capitulo, abordaremosdalueion de los problemas que
se hayan planteado en este proyecto.

En primera instancia, realizaremos el analisis da estructura cilindrica
semienterrada en el semiespacio con el fin de aapaprque la inclusion del nuevo
angulo de incidencig@) en las ecuaciones de propagacion de las ondasdba s

correcta.

En segundo lugar, afrontaremos el andlisis de stractura de contencion de
aguas; mas concretamente, la presa de Morrow Roafbrado, U.S.A). Se trata de una
presa clasica en analisis dinamicos, los cuales didm realizados por destacados

investigadores de nivel internacional.

Se trata éste de un capitulo de gran importanci&ralelel conglomerado que
supone la realizacion de este proyecto, puestoequél se abordara el analisis de los
diversos factores que conforman el fenbmeno dedaaeion sismica y que influyen en

la respuesta de una estructura.

Para la realizacion de los célculos, asi como ehanatamiento posterior de los
resultados, se ha optado por recurrir a la utiirade varios programas informaticos.
El correcto uso de éstos y la interpretacion pmstede los resultados obtenidos
dependen, en gran medida, del conocimiento pre@sios problemas estudiados y de
los fundamentos tedricos, asi como de los proceditos llevados a cabo por dichos

programas informaticos.

Como apartado final, se realizara una revision glisis de los resultados
obtenidos con el fin de elaborar unas conclusiauespuedan servir como base para
futuras lineas de investigacién en trabajos quedepanl realizarse en este campo de
estudio.
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5.2 Estructura cilindrica semienterrada en el semiespao.

Como hemos aclarado en el inicio de este capiélilorimer problema sometido
a estudio sera el de una estructura cilindrica esgigrirada en el semiespacio. El
problema queda esquematizado segun la figura B.1a eual hemos representado la

mitad del problema, que presenta simetria res@dgtiano xz.

Figura 5.1. Estructura cilindrica semienterradalesemiespacio.

Por lo que respecta a las dimensiones de la estay@sta tendra una altura de
200 m y un diametro de 50 m. En lo que a los medias intervienen en el andlisis,
diferenciamos dos clases: el suelo y la estructis.propiedades de cada uno de estos
medios se indican en la tabla 5.1.




Suelo Médulo de rigidez transversak, = 5 - 108 N/mm?
Maédulo de Poissonzg = 0.3
Coeficiente de amortiguamients = 0.05

Densidad;p, = 2000 kg/m?3

Estructura cilindrica Médulo de rigidez transversaf, = 1 - 101° N/mm?
Médulo de Poissory, = 0.2

Coeficiente de amortiguamient§, = 0.05

Densidadyp, = 2500 kg/m3

Tabla 5.1. Propiedades de los medios que intermienee| problema.

5.2.1 Discretizacion utilizada.

A lo largo de este apartado se detallard el proegsargado de definir el
modelo de elementos de contorno con el que sezarélel problema en cuestion. La
eleccion del modelo conlleva muchos aspectos mladios con el problema sobre los
que se debe decidir. Uno de estos aspectos radietegir la discretizacion adecuada

con el fin de aproximar la geometria del problenf@syvariables dinamicas del mismo.

Como sucede en la mayoria de problemas analizadbavéas del MEC,
encontrar la discretizacion adecuada supone el madg/dos retos que se plantean. El
objetivo sera el de encontrar una discretizacidn wo nimero de nodos razonable y a
través de la que se obtengan resultados lo suficiemte precisos. Cabe recordar que
cuanto mayor sea el nimero de nodos, mayor seranetro de grados de libertad del
problema y mayor sera el tiempo de computacionsaimepara obtener los resultados,
pudiendo incluso resultar insuficiente la capacidéel calculo de las maquinas
disponibles. De ahi a que sea muy tenida en cl@maportancia de la eleccion de la

discretizacion.

Por otro lado, cabe recordar que tanto la geomelaproblema como las
variables primarias y sus derivadas se aproximar@diante las funciones de

aproximacion explicadas en capitulos anteriores.
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Acerca de la discretizacion realizada sobre el hogdista ha sido obtenida a
través del software informatico GID, un pre y postgsador desarrollado por el
CIMNE (International Center for Numerical Methods EEngeneering), con sede en

Barcelona y que nos permite importar las discreitiwees realizadas y verlas de forma
grafica como se observa en la figura 5.2.

Figura 5.2. Discretizacion aplicada en la estrctilindrica semienterrada.

En lo referido a los elementos utilizados paradtes cabo la discretizacion, se
emplearon elementos cuadraticos cuadrilaterosmeasitos cuadraticos triangulares de
9 y 6 nodos respectivamente.

A modo de recordatorio, la simetria de la geometelaproblema provoca que
sblo sea necesaria la discretizacion de la mithdnismo (figura 5.2.). En efecto, la
reduccion de la discretizaciéon a la mitad nos coada que el numero de grados de
libertad del problema también se vea reducidoraitad, provocando que el sistema de
ecuaciones resultante de la aplicacion del MEC i@miteduzca su tamafio a la mitad,
reduciendo los tiempos de computacion y agilizaladobtencion de resultados. Para

explicar las razones de la simplificacion que poavia simetria del problema, se tiene
la figura 5.3.




Onda incidente

Figura 5.3. Simetria del problema y de la excitacielacion entre las componentes del desplazamnient

de dos puntos emplazados simétricamente.

Los puntos 1 y 2 se encuentran simétricamentedsitudEn caso de considerar
la discretizaciéon del problema entero y tras pkantel sistema de ecuaciones,
apareceran las incognitas correspondientes a ldssn@ y 2, en este caso las 3
componentes del vector desplazamietq,u,,u,). No obstante, recurriendo a la
simetria del problema, las componentes del veatspldzamiento de ambos puntos

guardan la siguiente relacion:

Uy = Uy
uyl = _uyz
Uz1 = Uy

Por lo que sustituyendo las variables de cada pdetauna de las partes
simétricas del problema por las de su simétrico,atsigno correspondiente, el sistema

se ve reducido a la mitad, con el importante ahocoroputacional que ello supone.
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5.3 Planteamiento del primer problema.

Como ya se dijo anteriormente, el primer problerraiga como prueba a modo
de comprobacion de que la inclusién del nuevo @ngld incidencia(e) en las

ecuaciones de propagacion de las ondas ha sidectarr

Para ello partiremos de un problema inicial, demawid problema de referencia.
Dicho problema sera distinto para cada tipo de oAdg y de un modo mas concreto,
en estos problemas sélo se tendra en cuenta teima de las ondas contenidas en un
plano perpendicular al plano de simetria de lauetra. Dentro de este plano donde se
encuentra contenida la onda, ésta puede variangulcdde incidencigf) sobre la
estructura. Se trata del planteamiento que se ltabiiderado hasta ahora sin tener en
cuenta el nuevo angulo de inciden€ig) introducido en el capitulo anterior. Con la
inclusion de este problema en nuestro proyecttanras de certificar que la inclusion
del &ngulo de incidencigp) en la formulacion matematica referida a la propegede
las ondas ha sido correcta. Se trata, por tantondecomprobacion desde el punto de
vista matematico, obviando las propiedades del neditros factores que influyeran en
la respuesta. Para aclarar un poco todo esto, vanespecificar el grafico en el que

quede detallado el problema de referencia espegifica cada tipo de onda.

En lo referido al punto objeto del analisis y sofireual describiremos cada uno
de los problemas de referencia, especificaremtravas de un grafico, el lugar donde
se ubica dicho nodo. Asi, se tiene que:

Figura 5.4. Nodo 421. Nodo sobre el que quedarfénergciados cada uno de los problemas de referencia




Onda SH

Estructura

‘ Onda SH

A 4

Figura 5.5. Problema de referencia para onda SH.

La figura 5.5 describe, desde una vista superiodesplazamiento provocado
por la onda SH en el nodo 421.

Onda P

Estructura

N

Onda P

Figura 5.6. Problema de referencia para onda P.
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La figura 5.6 nos muestra una vista lateral del @mden donde puede verse el
desplazamiento que provoca la incidencia de la &énhslabre el nodo 421. La incidencia
de la onda P sobre la estructura provoca la aparide dos componentes del vector

desplazamiento, la componemtg la componente.

Onda SV

Estructura

/

Onda SV

Figura 5.7. Problema de referencia para onda SV.

Finalmente, podemos observar a través de la figurévista lateral del modelo)
el desplazamiento que provoca la incidencia dentia&GV sobre el nodo 421. Al igual
gue sucediera para la onda P, la incidencia deda &V sobre el modelo provoca la
aparicion de dos de las componentes del vectolakespiento, la componentey la

componentev.

Una vez descrito el problema de referencia para oad de las ondas, asi como
el desplazamiento producido por cada una de ebasesel nodo de la estructura
sometida a analisis, el siguiente paso sera ebohgparar cada uno de los problemas de

referencia con aquellos en los que hayamos incklidoevo angulo de incidendia).

El valor de la variable que se esta representam#splazamientos) sera

adimensional; es decir, esta variable represerghndovimiento provocado por la




excitacion sismica sobre el nodo sometido a asdligisplazamiento) en relacién con el
movimiento provocado por esa misma excitacion sobre punto situado lo

suficientemente alejado de la estructura (campe)lib

Por lo que se refiere al valor de esta variablea pada valor de la frecuencia
ésta vendra dada por un numero complejo. Para rewencia determinada, la
excitacion provocara un movimiento arménico de aongpblunitaria en campo libre (en
ausencia de la estructura) y la respuesta en @b mometido al andlisis sera otra
funcién armonica de la misma frecuencia pero dentklsamplitud y desfasada con la
excitacion. El modulo del nUmero complejo representa amplitud de la respuesta en

relacion con la amplitud del movimiento en campodi

5.3.1 Onda SH

Problema de referenck? (8 = 30°)

nodo 421

4 ——MNodulo [tangente)

clf i

Frecuencia (rad/s)
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ProblemasHi (¢ = 30°;6 = 30)

—Modulo [tangente)

dfdu

Frecuenciarad/s)

ProblemaSH2 (¢ = 60°;6 = 30)

nodo 645

5 Madula [tangenta)

dicl

Frecuencia (rad/s)




ProblemaSH2 (¢ = 90%;6 = 30)

el el

—Madulo [tangente)

nodo 659

A modo de contrastar a través de datos numéricosoktrado a través de las

gréficas, introduciremos el valor del desplazanaigratra un valor concreto del rango de

Frecuencia (rad/s)

frecuencias estudiado. Asi, se tiene la siguieiikat

Frecuencia:5 rad/s | ¢ (grados) | 6 (grados) Parte Parte Modulo
real imaginaria
SHY (nodo 421) 0 30 4.63E+0Q  -2.85E+00 5.437532
SH} (nodo 580) 30 30 4.63E+00 -2.85E+00 | 5.437544
SH} (nodo 645) 60 30 4.63E+00  -2.85E+00 5.437581
SH} (nodo 659) 90 30 4.63E+00  -2.85E+00 5.437587
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Problema de referenciH? (6 = 60°)

dll'lda-l

B ]

L

—ddula [tangents)

nodo 421

5 10 15 20

Frecuencia (rad/s)

ProblemaSH? (¢ = 30°; 8 = 60°)

clfd

——adula [tangente)

25

a 5 10 15 20

Frecuencia (rad/s)

25




Resultados

ProblemasH? (¢ = 60°;6 = 60)

——Ngdulo [tangente) nodo 645

dfdu

a 5 10 15 20 25

Frecuencia (rad/s)

ProblemasH? (¢ = 90°;6 = 60°)

7 nodo 659

Madulo [tangente)

dfcli
.

a 5 10 15 20 25

Frecuencia (rad/s)
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Al igual que en el caso anterior, realizaremos tabda con el fin de contrastar

los resultados:

Frecuencia:5 rad/s| ¢ (grados) | 0 (grados) Parte Parte Modulo
real imaginaria
SHY (nodo 421) 0 60 5.08E+0Q -3.35E+00 | 6.081831
SH? (nodo 580) 30 60 5.08E+00 -3.35E+00 | 6.081843
SH3 (nodo 645) 60 60 5.08E+00 -3.35E+00 | 6.081881
SH? (nodo 659) 90 60 5.08E+00 -3.35E+00 | 6.081901
Problema de referenci? (8 = 90°)

E|

5

. —Aadulo [tangenta) nodo 421

clfda

|51 L I

m i

b

Frecuencia(rad/s)




ProblemasH3 (¢ = 30°;6 = 90)

Modulo [tangente)

dicu

25

20

Frecuencia (rad/s)

ProblemasH3 (¢ = 60°;6 = 90)

nodo 645

Madulo ftangznts)

didu

20 25

a
Frecuenciarad/s)




ProblemaSH3 (¢ = 60°;6 = 90)

L

dll'lda-l

——Mgdulo [tangente)

nodo 659
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Frecuencia(rad/s)

Frecuencia:5 rad/s| ¢ (grados) | 6 (grados) | Parte | Parte imaginaria| Modulo
real

SHY (nodo 421) 0 90 5.29E+00 -3.73E+00 6.472109

SH3 (nodo 580) 30 90 5.29E+00 -3.73E+00 6.472120

SH3 (nodo 645) 60 90 5.29E+00 -3.73E+00 6.472157

SH3 (nodo 659) 90 90 5.29E+00 -3.73E+00 6.472187




Resultados%

53.2 OndaP

Problema de referencif (8 = 30°)

Madula [radizl}

—igdulo (normal)

clf du

a 5 10 15 20 25

Frecuencia (rad/s)

ProblemaP} (¢ = 30°;6 = 30°)

Madulo [radial)

Madula [normal)

dfcl
[ER]

a 5 10 15 20 25

Frecuencia [rad/s)
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ProblemaP; (¢ = 60°;8 = 30°)

djfcli
(KR}

—Aadulo [radial)

——NModulo [normal)

5 10 15 20 25

Frecuencia (rad/s)

ProblemaP; (¢ = 90°;6 = 30°)

el

nodo 659

Modula [radial)

Modula [normal )

a 5 10 15 20 25

Frecuencia(rad/s)




Resultado

0 =30 Componente radial Componente normal
Frec:5 | ¢ Parte Parte Maodulo Parte Parte Maodulo
rad/s real imaginaria real imaginaria
P? (nodo| O | 4.30E+00 -1.99E+00 4.736 | 2.03E+00| -7.43E-01 2.159
421)
P} (nodo | 30 | 4.30E+0Q -1.99E+00 4.736 | 2.03E+00| -7.43E-01 2.159
580)
Pl (nodo | 60 | 4.30E+0Q -1.99E+00 4.736 | 2.03E+00| -7.43E-01 2.159
645)
Pl (nodo | 90 | 4.30E+0Q -1.99E+00 4.736 | 2.03E+00| -7.43E-01 2.159
659)
Problema de referencif (6 = 60°)
4.5
—Madulo [radial)
3 —Madulo [normal}

a

el f el
-U'| rd -Ll" (KN ) -U'| i

Frecuencia (rad/s)
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ProblemaP? (¢ = 30%;6 = 60)

* nodo 580

3,5 ——adulo [radial}

—ligdulo [normal)

dll'ldsl

Frecuencia (rad/s)

ProblemaP? (¢ = 60°; 6 = 60°)

nodo 645

Modulo [radial)

Madulo (normal)

dlllldal

a 5 10 15 20 25

Frecuencia (rad/s)




ProblemaPZ (¢ = 90°; 6 = 60°)

—ldadula [radizl}
3,5 . \
~ —lladulo [normal)
z ,5
T 2
1,5
0
0 g 10 i5 20 25
Frecuencia (rad/s)
0 =60 Componente radial Componente normal
Frec:5 | ¢ Parte Parte Maodulo Parte Parte Mddulo
rad/s real imaginaria real imaginaria
PY (nodo| O | 3.08E+00 -1.19E+00 3.303 | 2.52E+00, -5.53E-01 2.576
421)
P% (nodo | 30 | 3.08E+00 -1.19E+00 3.303 | 2.52E+00| -5.53E-01 2.577
580)
P3 (nodo | 60 | 3.08E+00 -1.19E+00 3.303 | 2.52E+00, -5.53E-01 2.577
645)
P% (nodo | 90 | 3.08E+00 -1.19E+00 3.303 | 2.52E+00, -5.53E-01 2.577
659)
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Problema de referencif (8 = 90°)

2,5

dicli

Madulo [normal)
]

nodo 421

a 5 10 15 20

Frecuencia(rad/s)

ProblemaP? (¢ = 30°;6 = 90°)

2,5

Modula (normal)

didu

25

nodo 580

a 5 10 15 20

Frecuencia [rad/s)

25




ProblemaP; (¢ = 60°;6 = 90")

2,5

ki

Madulo [narmal)

nodo 645

10 15

Frecuencia(rad/s)

ProblemaP$ (¢ = 90"; 8 = 90")

2,5

dicli

20

Madulo [normal)

25

nodo 659

10 15

Frecuencia (rad/s)

20

25
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0 =90 Componente normal
Frec: 5 rad/s Q Parte real Parte imaginaria Modulo
PY (nodo 421) 0 2.13E+00 -3.32E-01 2.151
P3 (nodo 580) 30 2.13E+00 -3.32E-01 2.151
P3 (nodo 645) 60 2.13E+00 -3.32E-01 2.151
P3 (nodo 659) 90 2.13E+00 -3.32E-01 2.151
5.3.3 Onda SV

Problema de referenck, (6 = 30°)

L
m

—iadula [radizl)

—Aadulo [normal)

(=]
(A2}

dfci

Frecuencia(rad/s)




ProblemasVi (¢ = 30°;6 = 30)

—lAgdulo [radial)

—Maodulo [normal)

dll'ldsl

nodo 580

Q 5 10 15 20

Frecuencia (rad/s)

ProblemasVy (¢ = 60°;6 = 30)

Madulo [radial)

dfdu
ra

Madulo (normal)

25

0 5 10 15 20

Frecuencia (rad/s)

25

nodo 645
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ProblemasVy (¢ = 90°;6 = 30")

nodo 659

Wigdulo [radial)

WMadula [narmal)

2,5
gz 2

1,5

0,5

0

a 5 10 15 20 25

Frecuencia (rad/s)

0 =30 Componente radial Componente normal
Frec:5 | ¢ | Parte real Parte Modulo | Parte real Parte Modulo
rad/s imaginaria imaginaria
PY (nodo| O | -2.22E+00| -2.15E+00 -1.73E+00| -2.93E-01
421)
P% (nodo| 30 | -2.22E+00| -2.15E+00 -1.73E+00| -2.93E-01
580)
P3 (nodo| 60| -2.22E+00| -2.15E+00 -1.73E+00| -2.93E-01
645)
P% (nodo| 90 | -2.22E+00| -2.15E+00 -1.73E+00| -2.93E-01
659)




Problema de referenci, (6 = 60°)

dfc

(=] (= (=] (5] - [Ea} (=2} =l

(==Y &)

—Aadula [radial)

—Agdulo [normal)

nodo 421

a 5 10 15 20

Frecuencia [rad/s)

ProblemasV (¢ = 308 = 60°)

dfcli

(=] (= (=] (=] - (Ea} L] |

(==l i)

Madulo [radial)

Madula [normal)

25

nodo 580

Resultados

a 5 10 15 20

Frecuencia(rad/s)

25
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ProblemasV? (¢ = 60°;8 = 60°)

dfdu

[=] [ (] (=] e (R} (2] =l

(= BN ]

——Nadulo [radial}

—Madulo [normal)

nodo 645

a 5 10 15 20

Frecuencia (rad/s)

ProblemasVZ (¢ = 90%;8 = 60°)

dicu

(= B &)

=

Madula [radizl}

— Agdulo [normal)

25

a 5 10 15 20

Frecuencia(rad/s)

25

nodo 659




Resultado

0 =60 Componente radial Componente normal
Frec:5 | ¢ | Parte real Parte Modulo | Parte real Parte Modulo
rad/s imaginaria imaginaria
PY (nodo| O | 4.83E+00 | -4.34E+00 1.37E-01 | -1.40E+00
421)
P% (nodo| 30| 4.83E+00 | -4.34E+00 1.37E-01 | -1.40E+00
580)
P3 (nodo| 60| 4.83E+00 | -4.34E+00 1.37E-01 | -1.40E+00
645)
P% (nodo| 90| 4.83E+00 | -4.34E+00 1.37E-01 | -1.40E+00
659)

Problema de referenci? (6 = 90°)

nodo 421

8
—liadulo [radial)

—dadula [narmal)

dicli

a
Frecuencia(rad/s)
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ProblemasV (¢ = 3078 = 90°)

7 nodo 580

—Madulo [radial)

o -

—Madulo [normal)
]

clf el
(52}

.

Lt

0 5 10 15 20 25

Frecuencia (rad/s)

ProblemasV; (¢ = 6078 = 90°)

3
g
nodo 645
& Madula [radizl)
= 5 Madula [narmal)
z
o 4
3
2 N
0

a 5 10 15 20 25

Frecuencia (rad/s)




ProblemasV$ (¢ = 90%;8 = 90°)

i

s nodo 659
5 ——Madulo [radial) \ig%b;
ﬁ 5 —Nigdula [normal) o R g
A | ey
3 O
. N Fjj%
a
0 5 10 15 20 25
Frecuencia [rad/s)
0 =90 Componente radial Componente normal
Frec:5 | ¢ Parte Parte Modulo | Parte Parte Modulo
rad/s real imaginaria real imaginaria
P2 (nodo | O | 5.29E+00, -3.74E+00 1.21E+00| -1.04E+00
421)
P? (nodo 5.29E+00| -3.74E+00 1.21E+00| -1.04E+00
580) 30
P2 (nodo 5.29E+00| -3.74E+00 1.21E+00| -1.04E+00
645) 60
P2 (nodo 5.29E+00| -3.74E+00 1.21E+00| -1.04E+00
659) 90

Tras realizar las comparaciones entre los probleteasferencia para cada tipo
de onda y los problemas donde se hayan considdeasdoombinaciones de los distintos
valores d&f y ¢, podemos llegar a la conclusién de que el nuegaolarde incidencia
¢ ha sido introducido con éxito en las expresionagematicas que hacen referencia a

la propagacion de las ondas sismicas.
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Para ello, hemos obtenido el valor del desplazamipara un valor concreto de
la frecuencia, que ha sido 8e-ad/s. Para dicho valor, podemos ver como el valor del
desplazamiento se mantiene inalterado para lasedttes hipotesis d@ y ¢ que se han

tenido en cuenta.

5.4 Planteamiento del segundo problema.

A través del estudio de este problema, abordaremlosestudio del
comportamiento sismico de presas boveda. Paraafitmtaremos el analisis dinamico
del modelo de una presa real, la de Morrow Point.

En muchos casos el tamafio de una presa bovedal emigieo orden de
magnitud que la longitud de las ondas sismicasl éareno de cimentacion. Como
consecuencia, el campo de desplazamientos enttdsosgle la presa provocado por un
sismo no es uniforme. De este modo, puntos difeseah la cimentacién de una gran
presa boveda pueden verse sometidos a valoresetkraamion distintos (incluso en
desfase) en el mismo instante de tiempo. La impoidade este efecto depende del
tamafo de la presa, de la longitud de las ondasicgis y de la direccion de
propagaciéon de las mismas; en cualquier caso, asund simplificacion de la
excitacion sismica que suponga un campo uniforndedplazamientos — aceleraciones
a lo largo de la interfase presa — terreno, no gdéja de representar los efectos de
interaccion mutua entre la presa y la base ro@sa,que también altera la naturaleza

real de la solicitacion y puede llevar a conclus®arréneas.

onda de
Rayleigh

onda 5H




La figura muestra el tipo de problema que se pdeeesolver. Se trata de una
presa béveda que cierra un cafidn cuya geometdeenegeneral irregular. EI embalse
estara lleno. Se desea conocer la respuesta dmataita presa ante una excitacion
consistente en una armonica plana que incide cgul@nariable desde zonas alejadas.
Se trata de un problema tridimensional que impiitadios de diferente naturaleza
(presa de hormigon, suelo y agua), para los cuzdbs esperar un comportamiento
acoplado muy distinto del que presentarian actuandependientemente. Por tanto,
cualquier modelo que pretenda abordar el probleal@dhque tener en cuenta la
geometria real tridimensional, los efectos de aueidn mutua, asi como la naturaleza

espacial de la excitacion.

5.4.1 Presa de Morrow Point.

La eleccion de esta presa para la realizacion délisss se debe a la gran
cantidad de andlisis previos existentes. Son mutdsutores que han estudiado la
respuesta sismica de varios modelos basados empresa, por lo que se podran
contrastar con mayor facilidad los resultados y metar muchas de estas
investigaciones. Ademas, las propiedades y geamnddria presa estan completamente

definidas, asi como las discretizacion correspanéie

La presa de Morrow Point esta situada en el Paxgusonal del Cafion Negro,

en el rio Gunisson, Colorado (USA).

Se trata de una presa situada sobre suelo rocasaeksa consta de 142 m de
altura. En la cota de coronacion abarca un arasrdenferencia d¢ 12,5 con un radio
de 113 m. los datos de la presa y el cafién puestadiarse con mayor profundidad en
Hall y Chopra (1983).

Tanto la presa de hormigon como el suelo rocos@nseonsiderados como

medios viscoelasticos, homogéneos e isétropos.
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Figura 5.8. Vista aérea de la presa de Morrow Point

Por lo que respecta al modelo que vamos a estigdidra optado por el de un
modelo de canal bajo con embalse cerrado. Estelmsd@justa mas a embalses reales
en los que el nivel de agua embalsada va disminlayanmedida que nos alejamos
aguas arriba de la presa; es decir, estamos hablaedl tipico embalse de

almacenamiento de agua para consumo.

Figura 5.9. Discretizacion para el modelo de chaf con embalse cerrado.




Resultados

La presa béveda se discretizara con el mismo #pelementos cuadraticos para
materiales viscoelasticos que para el suelo dentan®n. EI dominio fluido (el agua
embalsada) se discretizara en elementos de contwralizados en las interfases agua-
presa y agua-terreno (geomeétricamente estos elemenh los mismos que para las

regiones solidas).
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5.4.2 Influencia del angulo de incidencia sobre la resgiaale la presa.

5421 Onda SH.

F.T. ONDA SH. NODO EN ESTRIBO A LA ALTURA DE LA CORONACION.
4.5 T 1 1 T T !

T
‘ : : : : Incidencia 0°
\ : : : = Incidencia 30°

[ : : : : Incidencia 60°

Maodulo de la FT en direccion X

Frecuencia(rad/s)

Figura 5.10. Médulo de la Funcién de Transferepeaia un nodo situado en el estribo a la alturade |

coronacion.




F.T. ONDA SH. NODO EN PRESA A LA ALTURA DE LA CORONACION EN EL PLANO DE SIMETRIA.

45 1 1 \
: ; Incidencia 0°
Incidencia 30°
40 Incidencia 60° 4
Incidencia 90°

35
| AR ........ | ____________ ____________ ____________ ____________
25
20

15

Modulo de la FT en direccion X

10

0 \ I 1 il 1 I \
0 a5 1 1.5 2 25 3 35 4

Evani tanninalrad/al

Figura 5.11. Médulo de la Funcién de Transferepaia un nodo central situado a la altura de la

coronacion, en el plano de simetria.

F.T. ONDA SH. NODO EN ESTRIBO EN EL FONDO DEL EMBALSE EN EL PLANO DE SIMETRIA.

35 T T T 1 1 T T
: : : : . . Incidencia 0°
2 - Incidencia 30°
] ; : : : Incidencia 60°
Fleseanmon s S e S SR B Incidencia 90° H
; . e P ; .

Maodulo de la FT en direccidén X

0 I i i i i i I
0 0.5 1 1.5 2 25 3 3.5 4
Frecuencia(rad/s)

Figura 5.12. Médulo de la Funcién de Transferepaiaa un nodo del estribo en el fondo del embatlse, e

el plano de simetria.




Influencia de las caracteristicas de la excitaeibta respuesta sismica de una estructura

La figura 5.10, 5.11 y 5.12 nos muestra la amg@ldién de la respuesta en
frecuencias del movimiento anteroposterior pareasb de embalse lleno de agua. Se
han representado para tres nodos significativotadestructura: nodo situado en el
estribo a la altura de coronacion de la presa, sddado a la altura de coronacion en el
plano de simetria y nodo situado en el estriboldorelo del embalse en el plano de

simetria.

Puede observarse que en la figura 5.10, para fie@mse de bajo rango, la
respuesta de la estructura apenas ofrece variacemk que a la hipbtesis de= 0"y
0 = 30" se refiere. Es para frecuencias de rango altajeltmrespuesta de la estructura

si se ve influenciada por el valor del angulo drdencia.

Por lo que respecta a la figura 5.11, se puede nadosda importante
amplificacion que sufre la respuesta para un ndtl@do en el punto central de
coronacion de la presa en caso de embalse lleto.sEsdebe a la imposibilidad de
disipacién de energia a través del canal.

La figura 5.12 nos muestra la amplificacion pareasio de un nodo situado en el
fondo del embalse en el plano de simetria, la ofrate importantes variaciones de la

amplificacion para casos de angulo de incidentdsagerangd0°y 307).




5.4.2.2 Onda P.

F.T. ONDA P. NODO EN ESTRIBO A LA ALTURA DE LA CORONACION.
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Figura 5.13. Mdédulo de la Funcién de Transferepaia un nodo en el estribo a la altura de la

coronacion de la presa.

F.T. ONDA P. NODO EN PRESA A LA ALTURA DE LA CORONACION EN EL PLANO DE SIMETRIA.
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Figura 5.14. Mdédulo de la Funcién de Transferepeiea un nodo a la altura de coronacion.
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F.T. ONDA P. NODO EN ESTRIBO EN EL FONDO DEL EMBALSE EN EL PLANO DE SIMETRIA.
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Figura 5.15. Médulo de la Funcién de Transferepeia un nodo en el estribo en el fondo del

embalse, en el plano de simetria.

No se aprecian grandes variaciones en el valda denplificacion en la gréafica
5.13 entre los diferentes valores@lgue se han considerado. No ocurre lo mismo en la
gréfica 5.14, donde el valor de la amplitud adgquiestas muy altas inicialmente para
después reducir su valor de un modo considerabioroe vamos evolucionando a
través del rango de frecuencias. Finalmente, podarhservar como el nodo situado en
el fondo del embalse (figura 5.15) ofrece la pespuesta posible en comparacién con

el resto de nodos, para los diferentes casos dal@de incidencia considerados.




5.4.2.3 Onda SV.

F.T. ONDA SV. NODO EN ESTRIBO A LA ALTURA DE LA CORONACION.
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Figura 5.16. Médulo de la Funcién de Transferepaia un nodo en el estribo a la altura de la

coronacion.

F.T. ONDA SV. NODO EN PRESA A LA ALTURA DE LA CORCNACION EN EL PLANO DE SIMETRIA.
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Figura 5.17. Mddulo de la Funcién de Transferepeig un nodo central a la altura de

coronacion en el plano de simetria.
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F.T. ONDA SV. NODO EN ESTRIBO EN EL FONDOQ DEL EMBALSE EN EL PLANO DE SIMETRIA.
T I

T
Incidencia 20°

| i : Incidencia 51°
L R | T T g Incidencia 54°
. . Incidencia 60°
Incidencia 90°

Madulo de la FT en direccion X

Figura 5.18. Médulo de la Funcién de Transferepeia un nodo en el estribo situado en el fondo del

embalse, en el plano de simetria.

De las graficas 5.16, 5.17 y 5.18 podemos sacaroteclusion de que la
respuesta pésima de la estructura se produce glaresy ded muy proximos al angulo

critico, siendo el nodo central situado a la altleacoronacion el mas perjudicado.
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6 Conclusiones y desarrollos futuros
6.1.1 Revision y conclusiones.

En este proyecto fin de carrera se ha abordadmdasion, formulacion e
implementacion de un nuevo angulo de incidencitagmcuaciones de propagacion de

las ondas sismicas.

Del mismo modo, se ha abordado el estudio de urelmaddimensional de
elementos de contorno en el dominio de la frecaepara el estudio de problemas
donde coexisten regiones de naturaleza elastigdafl poroelastica. Este modelo se ha
aplicado con éxito al estudio del comportamiento pilesas boveda sometidas a
solicitacién sismica. El sistema, en este cas@, @ststituido por la presa, el terreno
donde ésta se cimenta y que dibuja el cafion ysal,\asi como el agua embalsada. Las
ecuaciones del MEC se aplican a cada una de lasesgdel sistema individualmente.
El acoplamiento posterior se realiza en las insedadel modelo de una forma directa y

rigurosa a través de ecuaciones adicionales deattbitidlad y equilibrio.

Este trabajo sigue una linea iniciada hace mas)daiads por profesores de la
Division de Mecanica de los Medios Continuos y ldtiras perteneciente al Instituto
Universitario SIANI de la Universidad de Las Palntes Gran Canaria. Uno de los
campos de investigacion de este grupo se centel eanocimiento de la respuesta
sismica de presas béveda; este campo de investigagise cierra aqui. Otros trabajos
tomaran el testigo dejado por éste siguiendo akydeala lineas de investigacion que
aqui se inician, con el objetivo final de un conuento lo mas profundo posible del

problema.

Cuando se marcaron los objetivos del proyecto, laetgd la necesidad del
estudio detallado de varios factores influyenteslaemespuesta sismica de presas,
principalmente el angulo de incidencia de las on@ase objetivo ha sido cubierto y
ademas se han desprendido otros estudios relao®mrad otros factores que han sido
analizados de forma secundaria, pero que tambi@hado tener un alto interés.
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Se han analizado, principalmente, dos problemas: estructura cilindrica
semienterrada en el semiespacio y un modelo deekame Morrow Point. De dicha
presa, se ha optado por el estudio del modelord bajo con embalse cerrado.

Los andlisis se han realizado a través del Métedimsl Elementos de Contorno

y se ha trabajado en el dominio de la frecuencia.

En referido a los dos primeros capitulos, se réaliza introduccion al trabajo y
se desarroll6 de forma teérica todas las ecuacignesconforman el campo de la

Elastodinamica.

A lo largo del tercer capitulo se abordo el MétdeédElementos de Contorno, y
todo lo que ello conlleva: ecuaciones de gobietipps de elementos a utilizar en la

discretizacion, etc.

Ha sido en el capitulo cuarto donde se introdujelasm ecuaciones de
propagacion de las ondas sismicas, incluyéndogstas al nuevo angulo de incidencia

() permitiendo dotar a la excitacidon sismica de waatar mas real.

Finalmente, en el capitulo quinto se ha incluidgmblema de la estructura
semienterrada, cuya finalidad se fundamentaba epr@bar la validez de las nuevas
ecuaciones de propagacion de las ondas, la csadldaatisfactoria; por lo que respecta
al modelo de andlisis de la presa de Morrow Pe@agbordo el estudio de dicho modelo
con el fin de someter a dicha estructura a unaitaion sismica, analizando la
influencia del angulo de incidencia sobre la resfaude la misma principalmente. Para
ello, se enfocd el andlisis sobre diferentes pumtesla estructura, obteniéndose

interesantes conclusiones:

» Habiéndose estudiado diferentes valores del angelincidencia para
los tipos de onda existentes (SH, P y SV), se ghsgue la onda SH
(6 = 0") provoca los valores maximos de la amplificaciérapal nodo
situado en el estribo, a la altura de coronaciola geesa.

* Por lo que respecta a la onda SV, ésta provocaloses maximos de la
amplificacion para valores muy proximos al angultico en el punto

central de la presa, a la altura de coronacioa deisma.
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6.1.2 Desarrollos futuros.

Con este capitulo ponemos punto y final a estegatoyfin de carrera, aunque el
estudio de investigacién realizado no finaliza ag@llgunas de las lineas de
investigacion que en este trabajo se plantean poska desarrolladas en un futuro
proximo. A continuacion, citaremos algunas posibies en las que seria interesante
profundizar, con el fin de avanzar en el conocintiate la respuesta dinamica de presas

béveda:

* Completar los estudios realizados con modelos aquerporen los
sedimentos que puedan formarse en el fondo dellsenpaque pueden
alterar la respuesta sismica de la estructura.

» Profundizar en el estudio de ondas Rayleigh, emskyan abanico mas
amplio de angulos de incidencia y tratando una maswiedad de
problemas.

* Asi mismo, profundizar en el estudio de los fac@aralizando cuando
la excitacion viene dada por el resto de ondas FSHSV).

» Abordar el estudio de otras zonas de la presa g@nauentren entre la
coronacion de la misma y el estribo, lugar dondearleidencias cercanas
a la rasante podrian provocar respuestas muy aeafdes. En este
proyecto hemos centrado el estudio sobre la zomdratede la
coronacion por ser un punto de respuesta muy ede\ai como en la
cimentacion por ser una zona especialmente sendilleobstante, el
estudio realizado nos ha revelado que zonas intBasieentre éstas
pueden tener un comportamiento que requiere sediadd.

* El estudio de la combinacién de ondas incidentesiregaso que ha
resultado tener especial interés. Pese a la adkdaor de las
combinaciones de ondas que pueden producirse erememoto,
conviene profundizar en el estudio incluyendo éifees tipos de ondas
al mismo tiempo, o evaluando el rango de las coadiames de ondas
gue provocan las respuestas mas desfavorablesces e terremoto
pésimo para la estructura. También se puede anmglliestudio a otros

modelos.
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