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5 Introducción 

1 Introducción 

  

1.1 Antecedentes. 

Existen multitud de problemas de análisis estructural en los que las acciones son 

variables en el tiempo de forma que, tanto los efectos inerciales como el análisis 

propiamente dicho, han de ser considerados desde una perspectiva dinámica. Entre ellos 

se encuentran aquellos en los que la estructura es sometida a una solicitación sísmica. 

El caso de excitaciones sísmicas y la respuesta sísmica de estructuras es un 

hecho que destaca por su importancia dentro del campo de la ingeniería. 

En lo que nos concierne al caso de las excitaciones sísmicas, éstas constituyen 

un campo notable de investigación dentro de la dinámica de estructuras debido, en gran 

parte, al efecto devastador que dicho fenómeno puede llegar a producir sobre la misma. 

Son muchos los aspectos del problema, desde la propia definición de la excitación 

sísmica hasta el comportamiento acoplado de la estructura con el suelo de cimentación, 

los cuales han sido objeto de aportaciones científicas en numerosas publicaciones 

dedicadas al tema.  

No obstante, aún existen gran cantidad de aspectos desconocidos o no 

entendidos en su totalidad. Entre algunos de estos aspectos destacamos el factor más 

determinante del problema, la excitación sísmica, la cual es la gran desconocida. 

Aspectos tales como el carácter aleatorio de la excitación y la incertidumbre sobre 

aspectos del emplazamiento, complican en gran medida el estudio de este tipo de 

problemas.  

El análisis sísmico de estructuras es un tema capital en la división de Mecánica 

de Medios Continuos y Estructuras, perteneciente al instituto universitario SIANI, al 

cual me he incorporado para poder llevar a cabo la realización del presente proyecto. 

En lo referido a esta división, existe un grupo de investigadores y colaboradores 

que trabajan, desde hace años, en modelos para el análisis sísmico de estructuras (más 

concretamente para el caso de presas bóveda). Es por ello que, todo lo realizado en este 
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proyecto fin de carrera, debe entenderse como un punto y seguido en el trabajo 

realizado por dicho personal de investigación. En última instancia, reseñar que el 

software necesario para poder llevar a cabo los cálculos que han hecho posible este 

proyecto, ha sido desarrollado por el propio grupo de investigación.  

A través de esta línea de trabajo se pretende dar un paso más en el conocimiento 

de la influencia de la excitación en la respuesta sísmica de la estructura, más 

concretamente en estructuras de contención de aguas. Las nuevas líneas de 

investigación iniciadas y que, algunas de ellas han sido desarrolladas en este proyecto, 

ofrecen diversas vías con posibilidad de admitir un profundo desarrollo en un futuro no 

muy lejano. 

Se trata, por tanto, de un proyecto en el cual trataremos de poner de manifiesto 

determinados factores que pudieran ser importantes en las características de la 

excitación sísmica, así como la influencia de éstos en la respuesta sísmica de la 

estructura. Dichos factores serán tratados con una gran profundidad de análisis.  

 

1.2 Objetivos del proyecto. 

La realización del presente proyecto tiene como principal objetivo determinar la 

influencia de determinadas características de la excitación en la respuesta sísmica de 

una estructura. Más concretamente, dicho estudio se centrará en el tipo de onda 

propagada así como el ángulo con el que dicha onda incide en el terreno.  

Para ello, se definirá un primer problema que se corresponde con el análisis 

sísmico de una estructura cilíndrica, de unas determinadas dimensiones, la cual se 

encuentra parcialmente enterrada en el terreno (semiespacio). Este primer problema será 

utilizado como un ejemplo de comprobación, a fin de certificar que la inclusión del 

nuevo ángulo de incidencia en la formulación referente a la propagación de las ondas 

sísmicas ha sido correcta. 

Posteriormente abordaremos un segundo problema, el cual consistirá en una 

estructura de contención de aguas. Será en este segundo problema, donde nos 



 

 

 

7 Introducción 

centraremos en algunos de los factores que determinan, en mayor o menor medida, la 

respuesta sísmica de una estructura. 

A modo de concretar, el análisis se centrará en la obtención de la respuesta 

dinámica de la estructura provocada por un tren de ondas que se propaga por el suelo, 

centrándonos en aspectos tales como el ángulo de incidencia de la onda, así como el tipo 

de onda que se esté sometiendo al análisis en ese instante. 

Se trata, por tanto, de un trabajo de gran complejidad que nos permitirá obtener 

conclusiones claras en relación a los objetivos que se persiguen. Es por ello que 

trataremos de presentar este proyecto de la manera más clara y precisa posible, con el 

fin de elaborar un material que pueda ser utilizado por personal de investigación 

cualificado.    

Existen, no obstante, otros objetivos relacionados con la formación del ingeniero 

propiamente dicho. Y es que aparte de la formación en materia de investigación, no se 

debe dejar de lado la formación relacionada con la dinámica de estructuras. A 

continuación, detallamos los objetivos a tener en cuenta: 

1. Estudio de las bases de la Elastodinámica lineal, dando vital importancia 

a la comprensión de los fenómenos de propagación de ondas elásticas y 

su correspondiente formulación matemática. 

2. Estudio de los diferentes modelos de excitación sísmica vinculados a la 

propagación de ondas elásticas a través del terreno. Comprensión de la 

naturaleza propagatoria del sismo, cuestión de gran importancia en el 

caso de estructuras de gran tamaño.  

3. Estudio de las bases de los métodos numéricos que han servido para el 

desarrollo de software aplicable al análisis de propagación de ondas en 

medios elásticos y al análisis sísmico de estructuras. Éste ha sido 

desarrollado por los integrantes de la división de Mecánica de los Medios 

Continuos y Estructuras, la cual se encuentra adscrita al IUSIANI 

(Instituto Universitario de Sistemas Inteligentes y Aplicaciones 

Numéricas en la Ingeniería). En el momento actual, dicho software 

permite la simulación de un tren de ondas plana con un ángulo variable, 
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aunque con una importante limitación; y es que, la dirección de 

propagación del campo incidente está contenida en un plano 

perpendicular al plano de simetría de la estructura. Se pretende con este 

proyecto final de carrera, superar esta limitación y poder abordar 

situaciones más reales. Por ello, la tarea más importante a realizar en 

dicho proyecto será la formulación e implementación de un tren de ondas 

plana con incidencia general. 

4. También, y ya ampliadas las capacidades del código, nos centraremos en 

su aplicación al estudio de la influencia del carácter de la excitación (tipo 

de onda y ángulo de incidencia) en la obtención de la respuesta sísmica 

más desfavorable de la estructura para un registro de campo libre del 

emplazamiento conocido a priori. 

5. Finalmente, obtendremos una amplia gama de resultados que 

plasmaremos de un modo muy claro, con el fin de que éstos puedan ser 

utilizados como material didáctico o, incluso, como referencia para 

estudios de investigación futuros. 

 

1.3 Factores que influyen en la respuesta sísmica de una estructura. 

Resulta fundamental ubicar el factor de seguridad como uno de los aspectos que 

más se debe tener en cuenta en la vida profesional del ingeniero, puesto que gran parte 

de recursos, medios de producción y vidas humanas dependen de ello. 

La conciencia tomada por técnicos cualificados en la materia ha conducido al 

desarrollo de costosas precauciones. Gracias a ello, el impacto de las catástrofes por 

fallo de la estructura ha sido relativamente pequeño. No obstante, el poco conocimiento 

que se tiene sobre el problema y la magnitud del impacto que pudiera ocasionar dicho 

problema, hacen necesario emprender nuevos estudios científicos y técnicos que 

contribuyan a acercarnos al conocimiento pleno del problema. Obtener de manera 

precisa la respuesta sísmica de una estructura ante la aleatoriedad que representa un 

terremoto es uno de los objetivos de muchos de los investigadores que trabajan en este 

campo.  
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En lo últimos tiempos se han llevado a cabo grandes avances en el estudio de la 

respuesta sísmica de estructuras. Sin embargo, existen factores que, aún hoy en día, 

siguen siendo una incógnita. En la medida de lo posible, este proyecto tratará de realizar 

una pequeña aportación al conocimiento de algunos factores que todavía no se han 

estudiado en profundidad.  

Como ya se ha comentado, existen multitud de aspectos que tienen gran 

influencia en la respuesta sísmica de una estructura. A continuación, realizaremos una 

clasificación en este sentido, si bien, estos fenómenos no son absolutamente 

independientes entre sí. 

1.3.1 Factores que influyen sobre los desplazamientos de campo libre. 

Los desplazamientos de campo libre en puntos de la superficie del terreno son 

los provocados por la acción de las ondas sísmicas sin tener en cuenta la presencia de la 

estructura. Si en el modelo estudiado los fenómenos de interacción pueden obviarse, el 

estudio dinámico de la estructura podrá realizarse utilizando como excitación sobre la 

cimentación las expresiones conocidas de este campo de desplazamientos.  

Los desplazamientos de la superficie libre del terreno están influenciados, de un 

lado, por la composición de las ondas sísmicas y su ángulo de incidencia; y por el otro, 

por las características geológicas y topográficas del emplazamiento. La influencia de 

este efecto asociado al emplazamiento sobre las variaciones del campo de 

desplazamiento en la superficie libre ha sido puesta de manifiesto por multitud de 

estudios teóricos y experimentales.  

1.3.2 El carácter espacial de la excitación. 

Hace referencia este factor al carácter viajero de las ondas sísmicas y al tamaño 

de la estructura analizada. 

Así, el análisis convencional de la respuesta sísmica de estructuras considera que 

el problema puede resolverse con una excitación idéntica que actúa en todos los puntos 

de la cimentación de la estructura. Esta hipótesis será admisible en el caso de suelos 
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infinitamente rígidos o que las dimensiones de la estructura sean inferiores a la longitud 

de onda característica del movimiento sísmico. 

Sin embargo, para estructuras con unas dimensiones del orden de la longitud de 

la onda que se propaga, deberán tenerse en cuenta la variación del campo de 

desplazamientos entre diferentes puntos de la cimentación, no siendo válida la hipótesis 

de suelo infinitamente rígido. Para el caso de los problemas que llevaremos a la 

práctica, no realizaremos esta última consideración. 

1.3.3 Fenómenos de interacción dinámica. 

Son multitud los estudios que han confirmado la importancia de los fenómenos 

de interacción en la respuesta sísmica del sistema.  

Así, ya en primera instancia los desplazamientos en la superficie del terreno 

provocados por las ondas sísmicas se verán alterados por la presencia de la estructura. 

Esta alteración del desplazamiento vendrá determinada, en gran medida, por la relación 

entre la rigidez de la estructura y la rigidez del terreno sobre el que dicha estructura se 

sustenta. 

En el caso de considerar un suelo mucho más rígido que la estructura, podemos 

concluir que los desplazamientos en la base de la misma serán idénticos a los de campo 

libre. No ocurre así para casos en los que se trabaje con suelos más flexibles, ya que en 

este caso la rigidez de la estructura influye también en los desplazamientos de la 

interfase entre los dos medios. Por otra parte, la consideración del terreno como un 

medio flexible acoplado con la estructura modifica las frecuencias propias en la 

respuesta de la estructura, así como provoca un aumento de la energía disipada.  

Con la inclusión del agua en el modelo se incrementan los fenómenos de 

interacción entre los distintos medios. La respuesta sísmica del modelo vendrá 

determinada por la interacción conjunta entre estos medios, presentándose diferencias 

significativas con respecto a modelos que no tienen en cuenta esta interacción, los 

cuales no están analizando de forma completa el problema real. 
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1.4 Metodología utilizada. 

A modo informativo, existen un número de problemas planteados en ingeniería, 

de los cuales es posible obtener la solución analítica obteniendo la resolución de un 

sistema de ecuaciones planteado a partir de las ecuaciones de gobierno; sin embargo, 

debemos de decir que el número de problemas que obedecen a este planteamiento es 

bastante menor que el número de problemas que se plantean con frecuencia en el mundo 

de la ingeniería.  

El problema que aquí planteamos no se encuentra dentro del reducido grupo de 

los que tienen solución analítica.  

En épocas pasadas, la posibilidad de afrontar un problema a través de técnicas 

numéricas resultaba una utopía. No obstante, gracias a la evolución tecnológica que han 

experimentado las máquinas de cálculo, dichos métodos numéricos se consideran 

actualmente imprescindibles por la multitud de ventajas que aportan, como puede ser el 

obtener una solución aproximada del problema con una precisión y un costo 

computacional razonable.  

Por lo que respecta al método, existe un amplio número de ellos que pueden ser 

utilizados como base del estudio del problema que se haya planteado. En nuestro caso, 

se empleará el Método Directo, el cual basa su funcionamiento en el análisis conjunto 

de todos los medios implicados en el problema.  

En lo que se refiere a la solución del problema, ésta se puede obtener tanto en el 

dominio del tiempo como en el dominio de la frecuencia. En el dominio del tiempo, 

todas las variables tendrán dependencia temporal, pudiéndose seguir una estrategia de 

resolución paso a paso; en lo referido al análisis en el dominio de la frecuencia, será éste 

el que emplearemos para obtener la respuesta sísmica de los problemas que se planteen. 

Las variables para este tipo de análisis serán de tipo armónico. En el dominio de la 

frecuencia, podremos obtener una simplificación importante de las ecuaciones que 

gobiernan el comportamiento elastodinámico de los medios implicados en el análisis. A 

modo de explicación, básicamente el procedimiento consiste en la obtención de la 

función de transferencia del sistema, mediante la resolución del sistema de ecuaciones 
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surgido a partir de la aplicación de un método numérico sobre la formulación integral en 

el contorno de las ecuaciones de gobierno del problema. Haciendo uso de estas 

funciones de transferencia y de la Transformada de Fourier, podremos obtener la 

solución temporal aproximada del modelo frente a una excitación sísmica determinada. 

Dicho procedimiento, será explicado con gran profundidad en capítulos posteriores.  

Pero no todo son ventajas en lo que a la utilización de la formulación en el 

dominio de la frecuencia se refiere, puesto que el enfoque del análisis desde dicho 

dominio no permite tener en cuenta posibles no linealidades. Además, la obtención de 

una respuesta temporal correcta requiere que se aplique una gama de frecuencias 

bastante alta en el análisis.  

Abordando un aspecto tan importante como es el método de cálculo utilizado, 

existen diversas técnicas numéricas empleadas para la obtención de soluciones 

numéricas de problemas de dinámica de estructuras. Éstas pueden dividirse en dos 

grandes grupos, técnicas de dominio o técnicas de contorno. Los métodos más 

importantes de estos dos grupos son: el Método de Elementos Finito (MEF) y el Método 

de Elementos de Contorno (MEC). Cada uno presenta ventajas e inconvenientes que 

analizaremos a continuación; no obstante, el MEC resulta más adecuado cuando se 

pretende realizar el análisis sísmico de una estructura. 

Por lo que respecta al MEC, éste se aplica sobre la formulación integral en el 

contorno de las ecuaciones de gobierno del problema. Dicha formulación relaciona las 

variables primarias del problema (desplazamientos y/o presiones) y sus derivadas 

(tensiones y/o derivada de la presión) a través de un problema de referencia (solución 

fundamental). El tratamiento numérico de las ecuaciones exige la discretización de los 

diferentes contornos en elementos. Dentro de cada elemento, la geometría del problema 

y el valor que toman las variables se aproxima por medio de unas funciones de 

aproximación convenientemente escogidas, a partir del valor en los nodos del elemento.  

Con todo esto y un conjunto de soluciones fundamentales independientes, la 

igualdad integral en el contorno de partida podrá transformarse en un sistema de 

ecuaciones algebraicas que permitirá la obtención de una solución aproximada del 

problema. 
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A continuación realizaremos una breve comparación entre el MEC y el MEF, la 

cual nos permitirá comprender el por qué de la utilización del MEC para abordar 

problemas de análisis sísmico.  

Por un lado, en el MEC se discretiza sólo el contorno de los diferentes medios 

implicados en el problema, provocando que el sistema de ecuaciones resultante sea 

menor. A su vez, el proceso de elaboración de las discretizaciones resulta más sencillo. 

No obstante, el tiempo de computación para obtener la solución usando el MEC no debe 

ser necesariamente menor que el que se necesita cuando el método usado es el MEF. 

Esto puede ser debido a que, por las características del MEC, en la matriz del sistema de 

ecuaciones a resolver la cantidad de ceros sea pequeña, dando lugar a tiempos de 

computación elevados. Por lo que respecta al MEF, los términos no nulos de la matriz 

de coeficientes del sistema de ecuaciones suelen estar agrupados en torno a la diagonal 

principal, lo que hace que el tiempo de computación pueda ser menor. 

Otro aspecto a tener en cuenta es el de que, cuando las propiedades de los 

medios son no lineales, existe una dificultad añadida. Para tratar de solucionar este 

inconveniente, se deben incluir integrales de dominio en la formulación integral, lo que 

puede acabar con las ventajas del MEC.  

Sin embargo, existe una ventaja fundamental que convierte al MEC en el método 

indicado para la resolución de los problemas que se plantean en este proyecto frente al 

MEF. En relación a este último, el MEC permite contemplar de forma muy natural 

dominios infinitos o semi-infinitos. Y es aquí donde las técnicas numéricas como el 

MEF se encuentran con la dificultad de cuantificar la porción de dominio a discretizar. 

Es más, se han encontrado con el inconveniente de definir contornos artificiales que, en 

problemas dinámicos, provocan reflexiones ficticias de las ondas, provocando una 

modificación en la solución del problema y haciendo que ésta sea menos fiable. Se han 

realizado numerosos intentos con el fin de aminorar este efecto, consiguiéndolo sólo en 

parte mediante la ayuda de algunas técnicas.  
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El Método de Elementos de Contorno, por el contrario, sólo requiere que se 

discretice cierta cantidad de suelo cercana a la estructura para representar 

adecuadamente el carácter no acotado del mismo; de este modo, lograremos que no se 

aporten nuevos contornos que traten de cerrar el dominio y que pudieran alterar la 

respuesta del modelo. Por ello, y a modo de conclusión, cuando la importancia de la 

estructura requiere gran exactitud en la obtención de los resultados, el MEC es el 

método numérico adecuado. 

 

1.5  Descripción de los contenidos. 

Tras un primer capítulo en el cual realizaremos una primera aproximación del 

proyecto, en el capítulo II se revisarán las ecuaciones que gobiernan el comportamiento 

dinámico de los tres medios implicados en el modelo. Estas ecuaciones se consideran 

una extensión de la Elasticidad lineal, involucrando la variable tiempo en el problema. 

También se revisarán dichas ecuaciones en el dominio de la frecuencia para los 

diferentes medios implicados en el modelo de estudio. Finalmente se afrontará la 

formulación integral en el contorno tanto para medios viscoelásticos como para medios 

escalares.  

En el capítulo III abordaremos la aplicación del Método de los Elementos de 

Contorno sobre la formulación integral expuesta en el capítulo II, llegando a plantearse 

el sistema de ecuaciones que deberá ser resuelto para obtener una solución aproximada 

al problema. En lo que se refiere a la parte final del capítulo, abordaremos algunos 

aspectos interesantes del MEC, como el tipo de elemento utilizado para la 

discretización, el acoplamiento entre los diferentes medios, el problema de esquina o la 

aplicación de las condiciones de contorno entre otros. 

Por lo que respecta al capítulo IV, se introducirán las ecuaciones que gobiernan 

la propagación de las ondas sísmicas (Sh, Sv, P y Rayleigh) a través del medio, 

teniéndose en cuenta que el tren de ondas pueda incidir desde cualquier ángulo de 

incidencia sobre la estructura sometida a estudio (hasta ahora se había tenido en cuenta 

que las ondas se encontraban contenidas en un plano determinado, sobre el cual se 

tenían en cuenta diferentes valores del ángulo de incidencia ���). 
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Finalmente, en el capitulo V se llevarán a cabo los primeros estudios de los 

problemas a analizar. Un primer problema será el compuesto por una estructura 

cilíndrica semienterrada en el semiespacio, cuyo propósito final será el de comprobar 

que la inclusión del nuevo ángulo de incidencia ��� en las ecuaciones de propagación  

ha sido correcta; y un segundo problema en el que afrontaremos el estudio de una 

estructura de contención de aguas (presa), analizando los diferentes factores que puedan 

influir en la respuesta de la estructura ante la acción de una solicitación sísmica. 

Será en el último apartado de este capítulo V, donde haremos balance de todos 

los resultados obtenidos con el fin de extraer el mayor número de conclusiones posibles 

de una manera clara y concisa. Así mismo, se marcarán las líneas de futuros desarrollos 

que puedan iniciarse a partir del trabajo de investigación realizado. 

 

2 Ecuaciones de la Elastodinámica 

 

2.1 Introducción 

A lo largo del presente capitulo afrontaremos el desarrollo de los conceptos 

teóricos, los cuales nos permitirán obtener una solución aproximada del problema que 

se desea analizar. Del mismo modo, estos conceptos teóricos servirán como base de 

programación en la estructura interna del software utilizado como herramienta de 

trabajo. 

En lo que a la primera parte de dicho capitulo se refiere, desarrollaremos las 

ecuaciones básicas de gobierno de los diferentes medios que intervienen en el problema, 

caracterizando dichas ecuaciones tanto para el dominio del tiempo como para el 

dominio de la frecuencia respectivamente. Como dato anecdótico, decir que estas 

ecuaciones representan una extensión de la Elastoestática lineal. 

Por lo que respecta a la segunda parte del capítulo, se afrontará el desarrollo de 

la formulación integral en el contorno para los diferentes medios que intervienen en el 

problema.  
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2.2 Propagación de ondas en problemas escalares y elásticos. 

Para poder entender de una manera precisa todo lo que este proyecto engloba, 

deberemos comenzar explicando las ecuaciones que gobiernan el comportamiento 

dinámico de los medios implicados en el análisis; es decir, medios elásticos y escalares. 

Por ello, iniciaremos el estudio realizando un breve recorrido por las ecuaciones básicas 

de la Elastodinámica Lineal, para posteriormente continuar con las ecuaciones de 

propagación de ondas en cada uno de los medios mencionados anteriormente. 

2.2.1 Ecuaciones básicas de la Elastodinámica Lineal. 

Comenzaremos introduciendo las ecuaciones que definen el comportamiento en 

régimen dinámico de un sólido. Éstas se conocen con el nombre de ecuaciones de 

equilibrio interno a nivel diferencial, que escritas en notación de índices quedará como: 

                                            ��� � 	� 
 � · 
� �                                                 (2.1) 

Siendo: 

• ��� las componentes del tensor de tensiones ���� 
 ����. 

• 	�  fuerzas de volumen. 

• �   densidad del sólido. 

En segundo lugar analizaremos el tensor de pequeñas deformaciones, encargado 

de relacionar las deformaciones con las componentes del desplazamiento en un punto 

del sólido considerado. Dichas ecuaciones escritas en notación de índices quedarán 

como: 

                                           ��� 
 �� · �
�,� � 
�,��                                            (2.2) 

En la expresión anterior denotaremos 
 como al vector desplazamiento en cada 

punto del sólido Ω. Este vector tendrá tres componentes, cada una de ellas según los ejes 

del sistema cartesiano fijo, respecto al cual definimos la posición del sólido. Por otro 

lado, � será el vector de posición en cada punto del sólido respecto al sistema cartesiano 

fijo. Dicho vector también constará de 3 componentes. 



 

 

 

17 Ecuaciones de la Elastodinámica 

Finalmente, tenemos la ley de comportamiento del material encargada de 

relacionar las componentes del tensor de tensiones con las componentes del tensor 

deformaciones. Para el caso que nos atañe; es decir, para materiales homogéneos, 

isótropos y con comportamiento elástico, la ecuación en notación de índices quedará 

expuesta de la siguiente manera: 

                       ��� 
 ���� · ��� � �� · ��� · ���                                        (2.3) 

Donde: 

• � coeficiente de Poisson. 

• � módulo de elasticidad del material. 

• ��� delta de Kronecker ���� 
 1 !"#" $ 
 % ; ��� 
 0 !"#" $ ( %�. 

No obstante, esta ecuación puede ser escrita de forma inversa como sigue: 

                                  ��� 
 ) · * · ��� � 2 · , · ���                                          (2.4) 

Siendo: 

• Módulo de rigidez transversal µ: 

                                                             , 
 ����-��                                          (2.5) 

• Constante de Lamé λ: 

                                                             ) 
 �·.·��-��                                             (2.6) 

• Dilatación volumétrica e: 

                                                              * 
 ���                                             (2.7) 

En algunos casos puede resultar interesante la utilización del módulo de rigidez 

volumétrica o módulo de compresibilidad (k) como una de las constantes características 

del medio. Dicha constante representa la relación entre la presión y el cambio unitario 
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de volumen provocado por ella misma. Establecemos ahora una relación entre esta 

constante y las anteriormente expuestas a través de la siguiente expresión: 

                                  / 
 ) � �0 · , 
 �0·��-���                                                (2.8) 

Desarrollando la ley de comportamiento en cualquiera de las dos versiones 

expuestas anteriormente, se obtendrá un total de 6 ecuaciones debido a la simetría del 

tensor de tensiones y del tensor de deformaciones. 

Si ahora consideramos todas las ecuaciones expuestas para un problema 

tridimensional, el resultado será la obtención de un sistema de 15 ecuaciones: seis de 

ellas referidas al tensor de deformaciones, tres ecuaciones de equilibrio dinámico y 

finalmente seis ecuaciones referidas a la ley de comportamiento. A su vez, 

dispondremos de 15 incógnitas: tres componentes del vector desplazamiento, seis 

componentes del vector de tensiones y otras seis componentes referidas al tensor de 

deformaciones, todas ellas con dependencia espacial y temporal. Considerando una 

solicitación genérica variable en el tiempo, el resultado ya sea en desplazamientos, 

tensiones o deformaciones serán ondas que se desplazan en el interior del dominio 

estudiado. 

Debido a lo complicado que resultaría el manejo de las 15 ecuaciones de manera 

conjunta, se procederá a la condensación del mismo obteniendo como resultado un 

sistema de 3 ecuaciones. Éstas son conocidas como las ecuaciones de Navier, las cuales 

dependen de las componentes del vector desplazamiento. Así, tenemos que: 

                          , · 1�2 � �) � ,�11 · 2 � 3 
 � · 2�                                   (2.9) 

Esta expresión ha de satisfacerse en todos los puntos del dominio en estudio para 

cada instante de tiempo. La integración de (2.9) así como la obtención del campo de 

desplazamiento en el dominio Ω, requiere la imposición de restricciones en el contorno Γ de Ω en forma de tensiones y desplazamientos conocidos; además, se deberán 

establecer condiciones iniciales en 5 
 0 para las tres componentes del desplazamiento 

y la velocidad en cada punto del medio. Una vez conocido el campo de 
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desplazamientos, tanto el tensor de deformaciones �����, 5� como el tensor de tensiones �����, 5� son inmediatos mediante las relaciones matemáticas mostradas hasta ahora.  

En los próximos capítulos nos adentraremos con más profundidad en la 

caracterización de estas ecuaciones para cada uno de los medios que intervienen en el 

problema.  

2.2.2 Propagación de ondas en medios viscoelásticos. 

A continuación estudiaremos que características deben de tener los fenómenos 

de propagación de ondas en un medio viscoelástico, homogéneo e isótropo. Se parte de 

las ecuaciones de equilibrio dinámico en desplazamientos (ecuaciones de Navier) y del 

problema que representa su integración teniendo en cuenta que las variables 

fundamentales (componentes del desplazamiento) se presentan acopladas. Debemos 

acometer el desacoplamiento del sistema de ecuaciones. En este sentido, los 

procedimientos que permiten llevar a cabo dicho objetivo parten de los trabajos de 

Poisson, si bien es Stockes (1849) el primero que presenta una formulación en términos 

de la dilatación volumétrica y el vector de rotación que permiten desacoplar las 

ecuaciones de un modo sencillo: 

                                           * 
 ��� 
 1 · 2                                                  (2.10) 

                                               6 
 1 7 2                                                     (2.11) 

En función de estas dos variables, podemos expresar la laplaciana del vector 

desplazamiento como: 

                                       1�2 
 1* � 1 7 6                                                (2.12) 

Introduciendo esta ecuación en (2.9), obtendremos que: 

                           , · 1 7 6 � �) � 2 · ,�1* 
 � · 2�                                     (2.13) 

Aplicando ahora el operador divergencia y el rotacional sobre (2.13) y, teniendo 

en cuenta que 1 · �1 7 8� 
 0 y 1 7 �1*� 
 0 además de ser nula la divergencia del 

vector rotación, podemos obtener las siguientes expresiones: 
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                                                1�* 
 �9:; · *�                                                   (2.14) 

                                                1�6 
 �9<; · 6�                                                  (2.15) 

Donde: 

=>� 
 ) � 2,�  

=?� 
 ,� 

Tanto (2.14) como (2.15) representan la versión desacoplada de las ecuaciones 

de Navier. Se tratan de ecuaciones de onda, la primera escalar y la segunda vectorial (=> 

y =? tienen dimensiones de velocidad). 

De este modo, la primera de las expresiones se asocia a cambios de volumen, 

propagándose con velocidad =>, mientras que la segunda expresión se asocia con 

distorsiones en la forma, propagándose ésta con velocidad =?. Para el caso de un medio 

homogéneo e isótropo infinito, ambas componentes coexisten y se propagan de manera 

independiente siendo => @ =?, motivo por el cual se denomina a las ondas irrotacionales 

ondas primarias (ondas P) y a las equivolumiales ondas secundarias (ondas S), puesto 

que las primeras alcanzan la estación en menor tiempo desde el epicentro del seísmo.  

Utilizando las velocidades de propagación como características del medio, la 

ecuación (2.13) puede escribirse como: 

                                      �=?�1 7 A � cC�1* 
 D�                                            (2.16) 

A partir de esta expresión, estudiaremos las características del movimiento de 

los puntos del sólido bajo el efecto de las ondas, suponiendo un problema de 

propagación plana armónica de carácter genérico con velocidad c. 
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El campo de desplazamientos en notación compleja y con amplitud unitaria, 

puede expresarse como sigue: 

                                        2 
 *��E·F-�·G·H� · I                                              (2.17) 

Siendo: 

• 8 frecuencia angular. 

• J  vector unitario que determina la dirección de propagación. 

• /  número de onda KE9 L. 

• �  vector de posición en cualquier punto del sólido respecto al sistema 

cartesiano de referencia. 

• $   unidad imaginaria. 

• M  vector unitario en la dirección del movimiento. 

De este modo, si sustituimos (2.17), cada uno de los términos de (2.16) serán: 

                           1 7 8 
 �/� · G 7 �G 7 I� · *��E·F-�·G·H�                         (2.18) 

                                1* 
 �/� · �G · I� · G · *��E·F-�·G·H�                             (2.19) 

                                     2� 
 �8� · *��E·F-�·G·H� · I                                      (2.20) 

Sustituyendo cada uno de los términos en la ecuación de gobierno, tenemos que: 

�=?� · ��/� · G 7 �G 7 I� · *��E·F-�·G·H�� � =>� · ��/� · �G · I� · G · *��E·F-�·G·H�� 
 �8� ·
*��E·F-�·G·H� · I                                                                                                              (2.21) 

Teniendo en cuenta que: 

G 7 �G 7 I� 
 �G · I� · G 

8�/� 
 =� 
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La expresión quedará de la siguiente forma: 

                          �=?� � =�� · I � �=>� � =?�� · �G · I� · G 
 0                        (2.22) 

Ahora trataremos de someter a estudio la ecuación de gobierno para los casos en 

los que la solicitación sísmica sea una onda P o una onda S. Para el primer caso, 

tenemos que la velocidad será => por lo cual procederemos a sustituir en (2.22) el valor 

de la velocidad para una onda genérica por el de una onda P �NO�.  
Para estas circunstancias, la ecuación solamente se verificará cuando G 
 PI; es 

decir, para el caso en el que la propagación de la onda y el movimiento tengan la misma 

dirección. Por ello, para el caso que nos atañe estaremos hablando de una onda 

longitudinal (onda P). La dirección de los vectores s y d se indica en la siguiente figura: 

 

Figura 2.1. Desplazamiento y dirección de propagación. Ondas planas P 

Para el segundo caso, se considera que la onda de carácter genérico es ahora una 

onda S. En tal caso, sustituiremos la velocidad de propagación genérica �=� por la 

velocidad de propagación de la onda S �=?�. Para estas circunstancias concretas, la 

ecuación de gobierno se cumple solo si �G · I� · G 
 0; esto requerirá que la dirección 

de propagación de la onda y la dirección del movimiento sean perpendiculares. Por ello, 

estaremos hablando de ondas transversales (ondas S). La dirección de ambos vectores �G Q I� para una onda S queda representada a través de la siguiente figura: 
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Figura 2.2. Desplazamiento y dirección de propagación. Ondas planas S 

A lo largo de este apartado hemos tratado de manera muy esencial las 

ecuaciones  que gobiernan el comportamiento de las ondas sísmicas en un medio 

viscoelástico. Para tratar de un modo más profundo la teoría de la Elastodinámica, 

consultar Achenbach (1973) y Eringen-Suhubi (1975). 

2.2.3 Ondas de presión en fluidos. 

A lo largo de este capítulo introduciremos las ecuaciones que gobiernan el 

comportamiento dinámico de un medio fluido. Para ello, trataremos dicho medio (agua) 

como un fluido compresible, no viscoso (fluido perfecto), adoptando un 

comportamiento elástico y lineal que trabaja en un rango de pequeñas perturbaciones. 

Un dato a tener en cuenta es el hecho de que todos los fluidos tienen viscosidad 

distinta de cero. No obstante, al variar ésta en amplios márgenes para diferentes fluidos 

podemos considerar que dicha viscosidad sea despreciada sin que se produzca pérdida 

de exactitud en los resultados. De este modo, en la parte fluida del problema sometido a 

estudio, los efectos inerciales serán predominantes sobre los viscosos. Además, no se 

tendrán en cuenta los efectos provocados por turbulencias. Un fluido perfecto (no 

viscoso) no es capaz de soportar tensiones tangenciales, lo que conlleva a que el tensor 

de tensiones se reduzca a su componente esférica. 

                                            ��� 
 �!���                                                       (2.23) 

Donde puede observarse que el signo negativo indica una tensión de compresión 

para un valor positivo de la presión.  
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La ley de comportamiento  para un fluido perfecto puede plantearse de la 

siguiente manera: 

                                 ��� 
 ��� 
 �00 
 �! 
 RS · �                                  (2.24) 

                                            ��� 
 ��0 
 ��0 
 0                                        (2.25) 

Donde: 

• RS módulo de compresibilidad del fluido, el cual representa la relación 

entre la presión y el cambio unitario de volumen provocado por ésta. 

• �   dilatación volumétrica del fluido. 

Recordemos que para medios viscoelásticos teníamos tres componentes del 

vector tensión para cada punto analizado. Para el caso que nos atañe (medio fluido), en 

cada punto tendremos un valor de la presión, de modo que conociendo el valor de la 

misma, será inmediata la obtención de las tres componentes del tensor de tensiones. 

Por otro lado, considerando T��H, 5� como el desplazamiento de un punto del 

fluido, la dilatación volumétrica vendrá dada por: 

                                                 � 
 ��� 
 T�,�                                              (2.26) 

Las tres ecuaciones de equilibrio interno que habíamos definido para un medio 

viscoelástico, se convertirán en una única ecuación para el caso de un medio fluido 

debido a que las componentes tangenciales del tensor de tensiones son nulas, así como 

las tres componentes normales idénticas. Por tanto, para un fluido perfecto podemos 

escribir la ecuación de equilibrio interno dinámico tal y como sigue: 

                                                 1! 
 � · 2�                                                     (2.27) 

La ecuación (2.27) nos será de gran utilidad a la hora de establecer las 

condiciones de contorno en las interfases entre dominio fluido y elástico (contornos de 

interfase suelo-estructura o agua-estructura). La ecuación anterior puede ser expresada 

en función de la dilatación volumétrica: 
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                                           RS · 1� 
 � · 2�                                                    (2.28) 

Aplicando los operadores divergencia y rotacional sobre la ecuación anterior, 

obtendremos la ecuación de onda que gobierna la propagación de una onda en el fluido: 

                                                 1�� 
 �9; ��                                                    (2.29) 

                                                 1 7 U 
 0                                                    (2.30)     

Puede verse como  para el caso un fluido, trataremos una única ecuación de onda 

(escalar). Para el caso de medios viscoelásticos, obtuvimos dos ecuaciones de onda (una 

escalar y otra vectorial) en donde la ecuación vectorial era la encargada de gobernar la 

componente rotacional de la onda. Así, tenemos que esta componente no se propaga 

para el caso de un fluido perfecto, siendo únicamente la dilatación volumétrica la 

encargada de gobernar el movimiento del fluido. Por otro lado, definiremos la velocidad 

de la onda, la cual coincidirá con la velocidad de propagación de una onda longitudinal: 

                                                   =� 
 VWX                                                        (2.31) 

Lo expuesto anteriormente nos lleva a concluir que las ondas transversales 

(ondas S) no se propagan a través del fluido. 

En términos de la presión, definimos la ecuación de onda tal y como sigue: 

                                                 1�! 
 �9; !�                                                    (2.32) 

Ecuación que será utilizada en adelante para caracterizar el comportamiento 

dinámico de un fluido perfecto, lineal y elástico sometido a pequeñas perturbaciones. 

 

2.3 Ecuaciones de gobierno en el dominio de la frecuencia. 

Hasta ahora se han tratado las ecuaciones de gobierno para los diferentes medios 

que intervienen en el problema, considerando las variables con dependencia espacial y 

temporal. 
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No obstante, conviene tener en consideración el comportamiento dinámico de 

estos medios, debido a la simplificación matemática que sufren las ecuaciones de 

gobierno al ser expresadas en el dominio de la frecuencia. También este planteamiento 

conlleva a simplificaciones en los procedimientos (computacionales) para la obtención 

de soluciones al problema.  

En cualquier caso, podremos plantear cualquier dependencia temporal de la 

variable como una superposición de armónicos de diferente frecuencia de acuerdo a los 

planteamientos de Fourier. 

Comenzaremos estudiando el problema elastodinámico. Para ello, 

consideraremos el desplazamiento en un punto x (con dependencia temporal y espacial) 

expresado en función de la frecuencia angular ω: 

                                            2�H, 5� 
 2�H, 8� · *�EF                                   (2.33) 

Donde 2�H, 8� es un vector de componentes complejas en donde el módulo de 

las variables complejas en el dominio de la frecuencia representa el valor máximo que 

adopta esa variable en el dominio del tiempo, mientras que la relación entre las partes 

real e imaginaria representa el desfase. 

Esta expresión llevada a las ecuaciones de Navier y considerando que las fuerzas 

de volumen también sean armónicas, nos conduce a la ecuación reducida de Navier. 

Ésta presenta mucha similitud con la ecuación original, pero con las variables 

dependiendo de la posición y la frecuencia. Así tenemos que: 

                        , · 1� · 2 � �) � ,�1* � 3 
 �� · 8� · 2�                            (2.34) 

Llegados a este punto, puede tenerse en cuenta el carácter viscoelástico del 

medio (disipativo) el cual vendrá dado por: 

                                        , 
 Y*Z,[ · �1 � 2$\�                                          (2.35) 

Donde ξ puede entenderse de la misma forma que el factor de amortiguamiento 

para sistemas de un grado de libertad. 
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Por otro lado, la variable fundamental para un fluido perfecto (la presión) puede 

expresarse en régimen armónico como: 

                                      !�H, 5� 
 !�H, 8� · *�EF                                          (2.36) 

Expresión que permite escribir la ecuación reducida o ecuación de Helmholtz: 

                                   1�! � /� · ! 
 0                                             (2.37) 

Donde: 

• / 
 E9   es el número de onda. 

Utilizando como variable primaria la presión, la variable derivada está 

relacionada con el desplazamiento de las partículas del fluido �T�� a través de (2.28). 

Así, en puntos del contorno y en la dirección marcada por la normal al mismo, tenemos 

que: 

                                           
]>]^ 
 � · 8� · T_                                                 (2.38) 

Siendo T_ el desplazamiento normal al contorno de las partículas del fluido. 

 

2.4 Formulación integral del problema. 

El objetivo fundamental de este apartado será el de obtener la formulación 

integral en el contorno para los diferentes medios implicados. Posteriormente, dicha 

formulación nos será de utilidad para poder obtener, a través de la aplicación de un 

método numérico, una solución aproximada del problema en cuestión. 

2.4.1 Formulación integral para el problema viscoelástico. Solución 

fundamental armónica. 

Inicialmente, partiremos del teorema de reciprocidad Wheeler y Sternberg 

(1968) que constituye una extensión del teorema de reciprocidad de Betty para la 

elastoestática.  
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Plantearemos la formulación sobre el dominio Ω, delimitado por el contorno Γ. 

La densidad del medio se denotará mediante ρ y las velocidades de propagación de las 

ondas primarias y secundarias a través del mismo por => y =? respectivamente. 

Ahora se definirán dos estados elastodinámicos independientes aplicados sobre 

el dominio considerado. Estos dos estados deberán satisfacer las ecuaciones de gobierno 

del medio analizadas en el apartado anterior. Así, tenemos que: 

Primer estado elastodinámico S, quedará definido por las siguientes variables: 

• 2��, 5� Vector desplazamiento con dependencia espacial y temporal. 

• `��, 5�  Vector tensión con dependencia espacial y temporal. 

• a��, 5�  Fuerzas de volumen con dependencia espacial y temporal. 

Segundo estado elastodinámico bc, quedará definido por las siguientes 

variables: 

• 2c��, 5� Vector desplazamiento con dependencia espacial y temporal. 

• `c��, 5�  Vector tensión con dependencia espacial y temporal. 

• ac��, 5�  Fuerzas de volumen con dependencia espacial y temporal. 

Estos dos estados elastodinámicos independientes aplicados sobre el mismo 

dominio Ω pueden relacionarse por medio de una formulación integral, el teorema de 

reciprocidad. Por ello, y para el caso de condiciones iniciales nulas, tenemos que: 

     d �` c 2c� MΓ � � d �a c 2c� MΩ 
 Ω d �`c c 2� MΓ � � d �ac c 2� MΩ Ω e e       (2.39) 

Donde el operador * entre vectores representa la suma del producto de 

convolución de sus componentes. 

El siguiente paso será desarrollar la formulación a partir del supuesto en el que 

las fuerzas de volumen y las condiciones de contorno sean armónicas en el tiempo, lo 

cual será considerado de vital importancia. Para ello, las variables fundamentales del 

problema serán expresadas en función de la frecuencia angular. Comenzando por las 

fuerzas de volumen, diremos que: 
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                                      a�H, 5� 
 a�H, 8� · *�EF                                          (2.40) 

Donde: 

• ω: frecuencia angular. 

• i: unidad imaginaria. 

Del mismo modo, pueden escribirse las fuerzas de volumen en función de la 

frecuencia angular para el segundo estado elastodinámico bc. 
Para el desplazamiento, la expresión añade un nuevo término: 

                            2�H, 5� 
 2f�H, 5� � 2�H, 8� · *�EF                                 (2.41) 

Donde el primer término del segundo miembro representa la parte transitoria de 

la respuesta. Es usual considerar que ésta desaparece transcurrida un cierto tiempo 

debido a los mecanismos internos de disipación de energía que presentan todos los 

sistemas físicos, quedando únicamente la parte permanente de la respuesta. Al igual que 

sucede con las fuerzas de volumen, ésta puede ser escrita para los desplazamientos del 

segundo estado elastodinámico bc. 
Finalmente, tenemos la expresión para la tensión en función de la frecuencia 

angular: 

                                       5�H, 5� 
 5�H, 8� · *�EF                                          (2.42) 

Expresión que también será aplicada al segundo estado elastodinámico bc.  
Así pues resulta conveniente definir dos nuevos estados sobre el mismo dominio 

Ω, en los que las variables dependan de la posición y de la frecuencia angular. Por tanto, 

formularemos el problema en el dominio de la frecuencia. Llamaremos a estos dos 

nuevos estados elastodinámicos estados reducidos, especificando la notación para las 

variables fundamentales a continuación: 

 



 

 

 

30 Influencia de las características de la excitación en la respuesta sísmica de una estructura 

Primer estado elastodinámico reducido bE, el cual quedará definido por las 

siguientes variables: 

• 2�H, 8� Vector desplazamiento con dependencia de la posición y de la 

frecuencia angular. 

• `�H, 8� Vector tensión con dependencia de la posición y de la frecuencia 

angular. 

• a�H, 8� Fuerzas de volumen con dependencia de la posición y de la 

frecuencia angular. 

Segundo estado elastodinámico reducido b6c , el cual quedará definido por las 

siguientes variables: 

• 2c�H, 8� Vector desplazamiento con dependencia de la posición y de la 

frecuencia angular. 

• `c�H, 8� Vector tensión con dependencia de la posición y de la 

frecuencia angular. 

• ac�H, 8� Fuerzas de volumen con dependencia de la posición y de la 

frecuencia angular.  

Aplicando el teorema de reciprocidad en el dominio de la frecuencia, 

obtendremos una expresión muy similar que para los estados iniciales con la salvedad 

de que se han eliminado los productos de convolución entre los vectores. Así, tenemos 

que: 

        d �` · 2c� MΓ � � d �a · 2c� MΩ Ω 
 d �`c · 2� MΓ � � d �ac · 2� Ω MΩ e e      (2.43) 

El teorema de reciprocidad ha sido aplicado entre el estado elastodinámico que 

se pretende resolver y otro convenientemente escogido del cual se conoce la solución.  

El siguiente paso será conocer la solución del estado elastodinámico en cuestión. 

Para ello, plantearemos un estado elastodinámico reducido determinado por una fuerza 

másica excitadora concentrada en un punto. Dicho estado elastodinámico se le conoce 

como el estado elastodinámico de Stockes, y la solución para dicho estado tanto en el 

campo de desplazamientos como en el de tensiones se conoce como solución 
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fundamental. La fuerza másica concentrada en el punto ξ responde a la siguiente 

expresión: 

                                         ac�H, 5� 
 ��\� · *�EFg                                        (2.44) 

Donde: 

• ��\� función impulso o delta de Dirac. 

• g vector unitario en la dirección de aplicación de la fuerza. 

Sustituyendo la fuerza excitadora aplicada sobre el punto ξ en la expresión 

(2.43) se tiene que: 

                2�\� 
 d �` · 2c� MΓ � d �`c · 2� e MΓ � d ��a · 2c� MΩ Ω e               (2.45) 

Donde: 

• 2�\� representa el desplazamiento en el punto donde se concentra la 

fuerza excitadora. 

• 2c representa el desplazamiento correspondiente al estado reducido de 

Stockes. 

• `c representa la tensión correspondiente al estado reducido de Stockes. 

2 y ` representan los campos de desplazamiento y tensión del primer estado 

elastodinámico, el cual se trata del problema que se pretende resolver a partir de la 

formulación planteada. 

A partir de ahora prescindiremos del último término de la ecuación anterior por 

considerar nulas las fuerzas de volumen del primer estado reducido. Esto conlleva a que 

la expresión quede planteada en el contorno Γ del dominio Ω. 

Acometeremos ahora la deducción de las expresiones del campo de 

desplazamiento y tensiones que dan solución al problema reducido de Stockes; las 

expresiones para la solución fundamental. Éstas tendrán que cumplir las ecuaciones de 

gobierno del medio sobre el que se aplique el estado reducido (en este caso 

viscoelástico). 
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Haciendo un poco de memoria, fue Stockes (1849) el primero en deducir la 

solución fundamental para problemas en el dominio del tiempo; posteriormente, fueron 

Cruse y Rizzo (1968) quienes obtuvieron la solución para el estado reducido a partir de 

la solución obtenida por Doyle (1966). No obstante, en este proyecto nos centraremos 

en las expresiones de la solución al campo de desplazamiento y tensión del estado 

reducido, obviando el proceso de deducción de dichas expresiones. 

Así, comenzaremos con la solución fundamental en desplazamientos. Partiendo 

de un punto que dista r del punto de aplicación de la carga ξ, el desplazamiento en la 

dirección k para una carga l vendrá dado por: 

                                                 Th� 
 �i·j·X·9<;                                               (2.46) 

Siendo: 

• k 
 4 en problemas tridimensionales. 

Ψ 
 n1 � 1o?� � 1o?p · *q<# � r=?=>s� · r 1o>� � 1o>s · *q:#  

X 
 n1 � 3zw� � 3zwp · eyzr � rcwcCs� · r1 � 3zC� � 3zCs · ey|r  

Donde: 

}? 
 $ · 8 · #=?}> 
 � $ · 8 · #=>
 

La componente k del vector tensión sobre una superficie cuya normal unitaria 

exterior es η viene dada por: 

~h� 
 �ij �K]�]� � ��L · K��h ]�]� � #,� · �hL � �� � K�� · #,h � 2 · #,� · #,h ]�]�L � 2 ]�]� ·
#,/·#,�·�#���=!2=J2�2·�Ψ�#����#�k2#·#,�·�/                                                     

(2.47)     
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Ahora plantearemos la formulación integral obtenida en (2.45) en función de la 

notación de índices utilizada para la solución fundamental. Esto puede resultar más 

esclarecedor a la hora de pensar en las direcciones tanto de aplicación de la fuerza como 

del resto de variables del problema. Por tanto, la expresión quedará: 

                          N�h�\� · 
h�\� 
 d �Th� · 5� � ~h� · 
�� MΓ e                         (2.48)      

Siendo: 

• 
h�\� desplazamiento del estado de solución desconocida, en el punto de 

aplicación de la carga del estado reducido de Stockes, según la dirección 

de aplicación de esta fuerza. 

• Th� solución fundamental en desplazamiento. 

• ~h� solución fundamental en tensiones. 

• N�h�\� coeficiente que tendrá un valor según el punto en el que se sitúe la 

carga en el estado reducido de Stockes: 

• N�h�\� 
 0, si el punto de aplicación de la carga es un punto no 

contenido en el dominio sobre el que se estudian los estados 

elastodinámicos. 

• N�h�\� 
 ��h, si el punto de aplicación de la carga es un punto contenido 

en el dominio sobre el que se estudian los estados elastodinámicos. 

No obstante, para poder obtener una formulación del problema en el contorno, la 

carga del problema reducido de Stockes debe aplicarse en puntos pertenecientes al 

mismo. Situándonos en dicho caso, y más concretamente en las integrales de contorno y 

en el punto de aplicación de la carga, los integrandos no quedarán correctamente 

definidos puesto que la solución fundamental presenta términos en 
��; y 

��. Cuando el 

punto sobre el que se integra coincide con el punto de aplicación de la carga, la 

distancia entre ellos es nula presentándose una singularidad. 

Para poder solventar dicha peculiaridad, recurriremos a un proceso de paso al 

límite. Dicho procedimiento consiste en sustituir el contorno Γ por la unión de dos 

contornos: Γ � Γ� y Γ�, siendo éste una porción de esfera de radio � � 0 (ver figura). 
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Figura 2.3. Igualdad integral en el contorno 

Tomando límites en las integrales a lo largo de Γ�, se tiene que: 

                                              lim��� d Th� · 5� MΓ� e� 
 0                             (2.49) 

                                       lim��� d ~h� · 
� MΓ� 
 Mh��\� e� · 
��\�               (2.50) 

Donde Mh� es una constante cuyo valor depende de la geometría del contorno en 

el punto de aplicación de la carga ξ (Domínguez 1989). 

Por tanto, y una vez resuelto el tema de la singularidad en el contorno, podemos 

concluir que la expresión de la formulación integral para puntos del contorno responde 

a: 

                                   N�h�\� · 
h�\� � d ~h� · 
� MΓ 
 d Th� · 5� MΓ e e          (2.51)  

Donde: 

N�h�\� 
 1 � Mh� 

Las integrales deben entenderse aplicadas a todo el contorno excepto al punto de 

aplicación de la carga (en el sentido del valor principal de Cauchy). 
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La expresión obtenida en (2.51), junto con las condiciones de contorno de un 

estado elastodinámico reducido concreto, conforma la formulación cerrada en el 

contorno, la cual se utiliza para obtener los desplazamientos y tensiones desconocidos 

en el contorno Γ del dominio Ω analizado.  

Por otro lado, se presenta el problema de que el obtener una solución analítica 

para casos generales resulta imposible. Es por ello por lo que se recurre al 

planteamiento numérico de la expresión integral, basándose en la aplicación del Método 

de los Elementos de Contorno, el cual estudiaremos en próximos apartados. 

2.4.2 Formulación integral para el problema escalar. Solución fundamental 

armónica. 

El objetivo principal de este apartado será el de obtener una formulación integral 

en el contorno para problemas escalares. En este caso se estudiará el dominio Ω de un 

medio escalar, delimitado por el contorno Γ. 

Al igual que ocurriese para el caso del medio viscoelástico, vamos a considerar 

dos estados dinámicos independientes aplicados sobre el dominio sometido a estudio. 

Para este caso, las variables fundamentales de cada estado serán la presión y su 

derivada. Conviene recordar la ecuación de onda de un medio escalar obtenida en 

apartados anteriores: 

1�! 
 1=� !� 
Debemos de recordar que en medios escalares solamente se propagan las ondas 

longitudinales o principales (ondas P), lo que conlleva a que c sea la velocidad de 

propagación de este tipo de ondas a través del medio.  

Un estado dinámico vendrá determinado por sus variables fundamentales. La 

presión en función de la frecuencia angular de un estado cualquiera puede escribirse 

como: 

                                         !��, 5� 
 !��, 8� · *�EF                                       (2.52) 
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Expresando la ecuación de onda de un medio escalar en el dominio de la 

frecuencia tenemos que: 

                                             1�! � E;9; · ! 
 0                                              (2.53) 

A continuación consideraremos dos estados dinámicos reducidos en los que las 

variables tendrán dependencia espacial y frecuencial, a partir de dos estados 

elastodinámicos con variables dependientes de la posición y el tiempo. Seguidamente, 

pasamos a definir ambos estados reducidos: 

Primer estado dinámico reducido b6� , definido a través de las siguientes 

variables: 

• !��, 8� presión con dependencia de la posición y de la frecuencia 

angular. 

• 
]>]� ��, 8� gradiente de presión con dependencia de la posición y de la 

frecuencia angular. 

Segundo estado dinámico reducido b6c� , definido a través de las siguientes 

variables: 

• !��, 8� presión con dependencia de la posición y de la frecuencia 

angular. 

• 
]>]� ��, 8� gradiente de presión con dependencia de la posición y de la 

frecuencia angular. 

Para poder relacionar estos dos estados reducidos y obtener una formulación 

integral en el contorno, partiremos del segundo teorema de Green, el cual establece que: 

           d �1�! · !c � ! · �1�!�c� Ω MΩ 
 d K!c · ]>]� � ! · K]>]�LcL MΓ e              (2.54) 

El segundo estado se corresponde a una fuerza de excitación concentrada en un 

punto $ del dominio, de modo que la presión y su gradiente se corresponderán con la 

solución fundamental y verificarán la ecuación de gobierno. 
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De manera análoga al caso del medio viscoelástico, nos limitaremos a exponer la 

solución fundamental para un medio escalar.  

Así, la presión en un punto que dista # del punto de aplicación de la fuerza 

vendrá dado por: 

                                               !c 
 ��j · ������                                                   (2.55) 

El flujo de presión será inmediato, derivando respecto a la normal al contorno: 

                             K]>]�Lc 
 ��j · r� ���� � ��;s · *���� · ]�]�                                 (2.56) 

Por otro lado, expresamos la ecuación de gobierno en el dominio de la 

frecuencia aplicada al estado reducido de Stockes, la cual se escribe como: 

                                     �1!�c � E;9; · !c � �� 
 0                                         (2.57) 

Introduciendo esta expresión en (2.54), tenemos que: 

d K1�! · !c � ! · E;9; · !c � ! · ��L MΩ 
 d K!c · ]>]� � ! · K]>]�LcL MΓ e Ω           (2.58) 

Reagrupando términos en el primer miembro: 

d K!c · K1�! � ! · E;9; L � ! · ��L MΩ 
 d K!c · ]>]� � ! · K]>]�LcL MΓ e Ω              (2.59) 

Donde puede verse que el término entre paréntesis de la 1ª integral se 

corresponde con la ecuación de gobierno en el dominio de la frecuencia (2.53), la cual 

es igual a cero. Por tanto, se tiene que: 

                          !� � d K! · K]>]�LcL MΓ 
 d K!c · ]>]�L MΓ e e                             (2.60) 

Por todos es sabido el hecho de que para que una formulación en el contorno sea 

viable es necesario que los puntos de aplicación de la carga pertenezcan a dicho 

contorno. En este caso, y al igual que sucediera para los medios viscoelásticos, se 
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presenta un problema de singularidad en los integrandos de las integrales extendidas al 

contorno (cuando el punto donde se integra coincide con el punto en el que se concentra 

la carga). 

Debemos extraer dicha singularidad. Para ello, procederemos de la misma forma 

que para los casos anteriores; es decir, mediante un proceso de paso al límite se tiene 

que: 

                                     lim��� d K!c · ]>]�L MΓ� 
 0 e�                                     (2.61) 

                          lim��� d K! · K]>]�LcL e� MΓ� 
 Mh��\� · 
��\�                      (2.62) 

A través de dicho procedimiento podemos rescribir la expresión integral en el 

contorno de la siguiente manera: 

                         =� · !� � d K! · K]>]�LcL MΓ 
 d K!c · ]>]�L MΓ e e                        (2.63) 

En cuya expresión, las integrales se entenderán en el sentido del valor principal 

de Cauchy. 

Como puede verse, se trata de una expresión análoga a la obtenida para un 

medio viscoelástico. Sobre dichas expresiones aplicaremos el Método de los Elementos 

de Contorno, lo cual nos llevará a un sistema de ecuaciones algebraicas cuya resolución 

nos facilitará la solución aproximada al problema. 

A modo de resumen, se ha obtenido la formulación integral en el contorno tanto 

para el problema viscoelástico como para el problema escalar. No obstante, la 

formulación obtenida no será aplicable desde el punto de vista de tratar de obtener una 

solución analítica del problema; por tanto, será necesaria la utilización de un método 

numérico que nos permita obtener una solución aproximada del problema. La aplicación 

de dicho método numérico, así como los aspectos que conlleva serán abordados en el 

siguiente capítulo. 
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3 El Método de los Elementos de Contorno 

 

3.1 Introducción. 

A lo largo del anterior capitulo hemos deducido, entre otras cosas, la 

formulación integral en el contorno, observándose que dicha formulación no presenta 

una solución analítica de garantías. Es por ello, que en el presente capitulo se ha tratado 

de desarrollar una metodología que permita obtener una solución aproximada al 

problema. Dicha metodología constituye el Método de los Elementos de Contorno.  

El objetivo de dicho procedimiento radica en llegar a un sistema de ecuaciones 

algebraicas en el que las incógnitas sean tensiones y desplazamientos en los puntos del 

contorno de la región que se desee estudiar.  

A modo de resumir todo lo que vayamos a explicar en dicho capitulo, 

comenzaremos describiendo la aplicación del MEC en un medio viscoelástico, para 

después continuar con la formulación del método en un medio escalar. Finalmente, 

recordaremos algunas peculiaridades del método numérico en cuestión. 

 

3.2 Aplicación del Método de Elementos de Contorno (MEC) en un 

medio viscoelástico. 

La primera de las condiciones que exige la aplicación de este método numérico, 

radica en la discretización de los contornos de los diferentes medios que conforman el 

dominio en elementos. Dichos elementos, a su vez, estarán formados por una serie de 

nodos. 

Por ello, consideremos el dominio Ω, delimitado por el contorno Γ discretizado 

en un número de elementos (NE). Se denominará al elemento genérico por Γ�. Así, 

partiremos del siguiente gráfico inicial: 
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Figura 3.1. Dominio Γ discretizado en elementos Γ�. 

A modo de tratar de conocer el valor de las variables en cada elemento, 

recurriremos a una serie de funciones de interpolación encargadas de aproximar el valor 

de las variables en los nodos que forman parte del elemento.  

Por lo que respecta a la geometría del contorno en el elemento, también ésta será 

aproximada a partir de la posición de los nodos que componen el elemento.   

Así, tenemos que para un elemento genérico Γ�, el desplazamiento en un punto 

perteneciente a dicho elemento viene dado por: 

                                                    
 
 Φ · 
�                                                  (3.1) 

Donde: 

• 2 vector que contiene las tres componentes del vector desplazamiento 

según los tres ejes cartesianos �	�, 	�, 	0� en un punto cualquiera del 

elemento Γ�. 

• 2� vector que contiene las tres componentes del vector desplazamiento 

según los tres ejes cartesianos �	�, 	�, 	0� para cada uno de los nodos 

que componen el elemento Γ�. La dimensión de este vector será de tres 

veces el número de nodos que componen el elemento. 

• Φ matriz que contiene las funciones de interpolación, encargadas de 

aproximar el valor de la variable de un punto cualquiera a partir del valor 
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de la propia variable en los nodos que definen el elemento. La matriz 

consta de tres filas, una por cada componente de la variable según los 

ejes coordenados, y un número de columnas que será tres veces el 

número de nodos que conforman el elemento Γ�: 

Φ 
 ��� 0 00 �� 00 0 ��   �� 0 00 �� 00 0 �� �  �� 0 00 �� 00 0 ��
� 

Siendo � el número de nodos del elemento Γ�. 

Del mismo modo se procede con el vector tensión, cuya expresión para un punto 

interior al elemento genérico viene dado por: 

                                                    5 
 Φ · 5�                                                    (3.2) 

En cuyo caso los términos de la expresión tendrán una interpretación similar a 

los de la expresión deducida para el desplazamiento. 

En último lugar, la posición de un punto interior al elemento genérico Γ� se 

aproximará de la misma forma que el vector tensión y el vector desplazamiento: 

                                                  � 
 Φ · ��                                                    (3.3) 

A modo de recordatorio, vamos a introducir la formulación integral en el 

contorno para un medio viscoelástico deducida en el capítulo anterior. Así, si aplicamos 

una carga en un punto $ del contorno en el estado reducido de Stockes, obtendremos la 

siguiente expresión: 

                              =� · 
� � d �5c · 
� MΓ 
 d �5 · 
c� MΓ e e                               (3.4)  

Aplicando esta expresión al contorno discretizado, las integrales en el contorno 

se transforman en sumatorios de integrales extendidas a cada elemento Γ�. En lo que se 

refiere a los sumatorios, éstos recorrerán todos los elementos en los que se discretiza el 

contorno: 
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     =� · 
� � ∑  d �5c · Φ� MΓ� e¡ ¢ · 
� 
 ∑  d �
c · Φ� MΓ� e¡ ¢ · 5�£��¤�£��¤�            (3.5) 

Donde las variables del problema en el interior de cada elemento Γ� se han 

sustituido por su expresión aproximada a partir del valor en los nodos. La resolución de 

estas integrales se estudiará en apartados posteriores. Por ahora, nos bastará con asumir 

que la resolución de las mismas dará lugar a una matriz de coeficientes que multiplicará 

al valor de la variable en los nodos que forman parte del elemento, los cuales serán las 

incógnitas del problema. Resaltar que un mismo nodo podrá formar parte de varios 

elementos.  

Si ahora desarrollásemos los sumatorios de la expresión y agrupamos los 

términos que multiplican a la tensión o al desplazamiento para un mismo nodo, 

podremos rescribir la ecuación anterior de la siguiente forma: 

                            =� · 
� � ∑ ¥¦�_££_¤� · 
_ 
 ∑ §̈�_ · 5_££_¤�                             (3.6) 

Donde los términos de las matrices ¥¦�_ y §̈�_ pueden escribirse como: 

                                        ¥¦�_ 
 ∑ d ~c · �� MΓ� e©F                                          (3.7) 

                                        §̈�_ 
 ∑ d Tc · �� MΓ� e©F                                          (3.8) 

Donde los sumatorios se extienden a los 5 elementos a los que el nodo ª 

pertenezca. � es la numeración local del nodo en el elemento.  

Como ha sucedido en ocasiones anteriores, lo que se desea es llegar a una 

expresión algebraica lo más compacta y simplificada posible; por ello, vamos a definir 

una nueva matriz ¥�_, tal que: 

                                            ¥�_ 
 ¥¦�_  J$  $ ( ª                                           (3.9) 

                                        ¥�_ 
 ¥¦�_ � =�  J$  $ 
 ª                                     (3.10) 
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A partir de la nueva definición de ¥�_ podemos agrupar el primer miembro de la 

ecuación en: 

                                    ∑ ¥�_ · 
_ 
 ∑ §�_ · 5_££_¤�££_¤�                                  (3.11) 

La expresión anterior, para el caso específico en el que el nodo pertenezca a una 

discretización cualquiera, dará lugar a tres ecuaciones algebraicas. Si esto se produce 

para los ª nodos de la discretización del contorno, obtendremos un sistema de 3n 

ecuaciones algebraicas, el cual podrá escribirse como: 

                                                ¥ · 
 
 § · 5                                                  (3.12) 

Será en este sistema de ecuaciones donde se introducirán las condiciones de 

contorno. La resolución del problema en el contorno, implicará la obtención de las 

matrices ¥ y §, así como la resolución de un sistema de ecuaciones algebraicas, 

quedando el problema totalmente planteado. 

 

3.3 Aplicación del Método de Elementos de Contorno (MEC) en un 

medio escalar. 

Volvemos a partir de la situación anterior, considerando un dominio cualquiera 

Ω de un medio escalar, delimitado por el contorno Γ y discretizado éste en un total de 

NE. Llamaremos Γ� a un elemento genérico. Finalmente, cada elemento estará formado 

por un determinado número de nodos que dependerá del tipo de elemento usado.  

Para este tipo de problemas concretos, las variables fundamentales serán la 

presión y el flujo. Éstas se aproximarán mediante funciones de interpolación a partir del 

valor de la variable en los nodos de cada elemento. La presión en un punto del elemento Γ� se aproximará como: 

                                                              ! 
 Φ · !�                                       (3.13) 
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Donde: 

• «� vector que contiene el valor de la variable en los nodos que forman 

parte del elemento Γ�. 

• Φ vector de funciones de aproximación o funciones de forma: 

Φ 
 ¬��, �� … ��® 
Siendo � el último nodo que forma parte del elemento Γ�. 

El flujo en un punto del contorno se aproxima de la forma: 

                                                 
¯«¯° 
 Φ · ±]>]�²�

                                                (3.14) 

Por lo que se refiere a la geometría del contorno, también ésta se aproximará 

mediante las funciones de forma. La posición de un punto del interior del elemento Γ� en 

función de la posición de los nodos que conforman dicho elemento es: 

                                                  � 
 Φ · ��                                                   (3.15) 

Donde: 

Φ 
 ��� 0 00 �� 00 0 ��   �� 0 00 �� 00 0 �� �  �� 0 00 �� 00 0 ��
� 

Conviene ahora recordar la expresión de la formulación integral en el contorno 

para medios escalares deducida en capítulos anteriores: 

                         =� · !� � d K! · K]>]�LcL MΓ 
 d K!c · ]>]�L MΓ e e                        (3.16) 

Donde $ es un punto perteneciente al contorno sobre el cual se aplicará la carga. 

Al discretizar el contorno en elementos, las integrales se convierten en sumatorios a lo 

largo de todos los elementos extendidas a cada uno de ellos. Las variables en el interior 

del elemento se sustituyen por su valor aproximado, llegándose a: 



 

 

 

45 El Método de los Elementos de Contorno 

=� · !� � ∑  d �±]>]�²c · Φ³ MΓ� e¡ ¢ !� 
 ∑  d Z!c · Φ[ e¡ MΓ�¢ ±]>]�²�£��¤�£��¤�              (3.17) 

Se pueden agrupar los términos que multiplican a la variable correspondiente a 

un mismo nodo, teniéndose que: 

                         =� · !� � ∑ ¥¦�_ · !_ 
 ∑ §�_ · ±]>]�²_££_¤�££_¤�                           (3.18) 

Donde puede verse que los sumatorios se extienden a todos los nodos que 

forman parte del contorno discretizado. Por otro lado, los términos de las matrices ¥¦�_ y §�_ pueden escribirse como: 

                                       ¥¦�_ 
 ∑ d ±]>]�²c · �� e¡ MΓ�F                                       (3.19) 

                                        §�_ 
 ∑ d !c · �� e¡ MΓ�F                                         (3.20) 

Como puede observarse, el proceso es idéntico al seguido para el caso de un 

medio viscoelástico. A continuación, definimos la matriz ¥¦�_, tal que: 

¥�_ 
 ¥¦�_  J$  $ ( ª 

¥�_ 
 ¥¦�_ � =�   J$  $ 
 ª 

Particularizando (3.18) para cada uno de los nodos pertenecientes al contorno, de 

modo que se trate de hacer variar el nodo de aplicación de la carga a cada uno de los 

nodos del contorno, obtendremos un sistema de ecuaciones algebraicas igual al número 

de nodos. Este sistema puede escribirse como: 

                                               ¥ · ! 
 § · ]>]�                                                 (3.21) 

Ahora trataremos de expresar (3.21) en función del movimiento normal al 

contorno, teniéndose que: 

�!�� 
 � · 8� · ´ 
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Siendo: 

• ´ el movimiento normal al contorno. 

• 8 la frecuencia angular. 

• � la densidad del medio escalar considerado. 

Esto implicará que definamos una nueva matriz §µ 
 § · � · 8�, por lo que la 

ecuación (3.21) quedará de la siguiente manera: 

                                                 ¥ · ! 
 §µ · ´                                             (3.22) 

La aplicación de las condiciones de contorno para cada nodo, las cuales podrán 

ser el valor de la presión en dicho punto o del desplazamiento normal en el mismo, nos 

conducirá a un sistema de N ecuaciones con N incógnitas. 

 

3.4 Acoplamiento entre regiones. 

Tras haber obtenido la formulación del MEC tanto para medios viscoelásticos 

como para medios escalares, estudiaremos el modo de acoplamiento de ambas 

formulaciones en un contorno que sea interfase entre los dominios de los diferentes 

medios analizados, ya sea viscoelástico-viscoelástico, escalar-escalar o viscoelástico-

escalar.  

Para ello se tendrán en cuenta dos dominios Ω� y Ω�, así como tres contornos: 

• Γ� que delimita al dominio Ω�. 

• Γ� que es el contorno de interfase entre ambos dominios. 

• Γ0 que delimita al dominio Ω�. 
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Figura 3.2. Contorno interfase entre dos dominios. 

3.4.1 Interfase viscoelástico-viscoelástico. 

Para llevar a cabo dicho estudio, hemos de considerar un ejemplo que nos sirva 

de aplicación. En este caso, recurriremos a un contorno de interfase entre una estructura 

de contención de aguas (presa) y el suelo sobre el que se sitúa dicha estructura.  

Desarrollando el sistema de ecuaciones correspondiente a cada dominio, se 

puede escribir para cada uno que: 

                              ¥�� · 
�� � ¥�� · 
�� 
 §�� · 5�� � §�� · 5��                            (3.23) 

                              ¥�� · 
�� � ¥0� · 
0� 
 §�� · 5�� � §0� · 50�                           (3.24) 

Expresiones donde los subíndices hacen referencia al contorno y los 

superíndices al dominio. 

Cabe reseñar que entre ambos dominios deben cumplirse las ecuaciones de 

compatibilidad y equilibrio en el contorno de interfase, que se expresan como: 

Compatibilidad de los vectores desplazamiento: 

                                                  
�� 
 
�� 
 
�                                              (3.25) 

Equilibrio entre los vectores tensión: 

                                                   5�� 
 �5�� 
 5�                                           (3.26) 
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Aplicando lo anterior, podemos escribir un sistema de ecuaciones global: 

                     ¶¥�� ¥�� 00 ¥�� ¥0�· · ¸
��
�
0�
¹ 
 ¶§�� §�� 00 §�� §0�· · ¸5��5�50�

¹                      (3.27) 

3.4.2  Interfase escalar-escalar. 

Para este caso en concreto, Ω� y Ω� serán medios escalares. Desarrollando el 

sistema de ecuaciones correspondiente a cada dominio: 

                           ¥�� · !�� � ¥�� · !�� 
 §�� · ´�� � §�� · ´�� � §�� · ´��            (3.28) 

                          ¥�� · !�� � ¥0� · !0� 
 §�� · ´�� � §0� · ´0�                             (3.29) 

Por lo que respecta a las ecuaciones de compatibilidad y equilibrio, éstas se 

expresarán como: 

• Compatibilidad en desplazamientos: 

                                           ´�� 
 �´�� 
 ´�                                               (3.30) 

Equilibrio de presiones: 

                                            !�� 
 !�� 
 !�                                                    (3.31) 

Quedando el sistema de ecuaciones global tal y como sigue: 

                    ¶¥�� ¥�� 00 ¥�� ¥0�· · ¸!��!�!0�
¹ 
 ¶§�� §�� 00 §�� §0�· · ¸´��´�´0�

¹                     (3.32) 

3.4.3 Interfase viscoelástico-escalar. 

Este tipo de interfase es el que más dificultades presenta. A modo de clarificar 

un poco todo lo explicado, vamos a pensar en el caso de un contorno de interfase 

existente entre una presa y el agua embalsada. 



 

 

 

49 El Método de los Elementos de Contorno 

 

Figura 3.3. Contorno interfase entre estructura de contención y el agua embalsada. 

La resolución de este caso presenta la particularidad de tener seis incógnitas por 

nodo �
º, 
», 
q , 5º, 5», 5q� pertenecientes al contorno del sólido (estructura de 

contención), y dos incógnitas por nodo �!, 8� como pertenecientes al medio escalar 

(agua embalsada). Aplicando el MEC tanto al medio viscoelástico como al medio 

escalar, dará como resultado el sistema de ecuaciones que se expone a continuación: 

                           ¥�� · 
�� � ¥�� · 
�� 
 §�� · 5�� � §�� · 5��                               (3.33) 

                           ¥�� · !�� � ¥0� · !0� 
 §�� · ´�� � §0� · ´0�                            (3.34) 

Donde Ω� se corresponde con el medio viscoelástico y Ω� se corresponde con el 

medio escalar. 

Las ecuaciones de compatibilidad y equilibrio en el contorno de interfase 

presentan la dificultad añadida de relacionar las variables que definen a ambos medios. 

Por lo que respecta a la condición de compatibilidad de desplazamientos en la interfase, 

ésta se manifestará de modo que el movimiento normal deba ser igual tanto para el 

medio viscoelástico como para el medio escalar. Así, si �º, �» y �q son los cosenos 

directores de la normal al contorno del líquido, tal condición se establece como: 

                                    ´ 
 
º · �º � 
» · �» � 
q · �q                               (3.35) 
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Por lo que respecta al equilibrio, éste se expresa en la interfase como la igualdad 

entre la tensión normal al contorno del sólido y la presión en el líquido, añadiéndose la 

ausencia de tensión tangencial en la interfase. Esto se traduce en: 

                                                   5º 
 ! · �º                                                  (3.36) 

                                                  5» 
 ! · �»                                                  (3.37) 

                                                  5q 
 ! · �q                                                   (3.38) 

Mediante el uso de las expresiones que hacen referencia tanto al equilibrio como 

a la compatibilidad de desplazamientos, será viable expresar cuatro incógnitas en 

función de las otras cuatro, quedando !, 
º, 
» Q 
q como las incógnitas de la interfase.  

Ahora introduciremos estas expresiones tanto en (3.33) como en (3.34) con el fin 

de poder obtener un sistema de ecuaciones global para este tipo de interfase. 

Comenzaremos por la expresión referida al dominio Ω�, introduciendo para cada 

nodo del contorno Γ� las expresiones referidas al equilibrio (3.36), (3.37) y (3.38), de 

modo que: 

                         ¥�� · 
�� � ¥�� · 
�� 
 §�� · 5�� � §�� ·
¼½½
½½½
¾!� · �º!� · �»!� · �q¿!_ · �º!_ · �»!_ · �q ÀÁÁ

ÁÁÁ
Â
                       (3.39) 

Siendo ª el número de nodos del contorno interfase. Podemos, no obstante, 

reorganizar la expresión y definir una nueva matriz §���, en la que cada término es la 

suma de los términos que multiplican al mismo valor de la presión por la componente 

del vector normal correspondiente: 

                                        §�  ���� 
 ∑ §���,0�-0��0�¤� · ��                                (3.40) 
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La nueva matriz tiene unas dimensiones de 3�ª� � ª�� 7 ª�, siendo ª� y ª� el 

número de nodos de los contornos 1 y 2 respectivamente; por tanto, el sistema puede 

rescribirse como: 

                             ¥�� · 
�� � ¥�� · 
�� 
 §�� · 5�� � §��� · !��                           (3.41) 

Ahora nos centraremos en la expresión referida al dominio Ω�. Al igual que 

sucediera antes, sustituiremos para cada nodo del contorno Γ�, la expresión 

correspondiente a la compatibilidad en desplazamientos, obteniéndose el siguiente 

resultado: 

  ¥�� · !�� � ¥0� · !0� 
 §�� · Ã
º� · �º 
»� · �» 
q� · �q ¿  
º_ · �º 
»_ · �» 
q_ · �qÄ � §0� · ´0�        (3.42) 

También podemos definir una nueva matriz §��� en la que el número de 

columnas será tres veces mayor a la matriz de la que proviene. Entendiendo un poco 

dicha matriz, las tres columnas de la primera fila se corresponden con el primer valor de 

la matriz primitiva multiplicado por cada uno de los cosenos directores de la normal. Lo 

mismo sucederá con el resto de elementos; por tanto, cada término de la nueva matriz 

podrá escribirse como: 

                                                 §�  ���� 
 §�  ��� · ��                                         (3.43) 

Por lo que respecta a la dimensión de la nueva matriz, ésta obedecerá a la 

siguiente expresión: 

�ª� � ª0� 7 3 · ª� 

El sistema de ecuaciones para el dominio del medio escalar, una vez introducida §���, queda como: 

                            ¥�� · !�� � ¥0� · !0� 
 §��� · 
� � §0� · ´0�                          (3.44) 

Finalmente partiremos de las expresiones deducidas para ambos medios 

(viscoelástico y escalar) durante este apartado para tratar de obtener el sistema de 

ecuaciones global, el cual quedará como: 
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3�ª� � ª���ª� � ª�� ¼½

½¾¥��0Å
0_Æ

  ¥���§���
ÇÈÉ0_;

  �§���¥��
ÇÈÉ_;

  0¥0�
Å_Ê

ÀÁ
ÁÂ · Ë
�
�!�!0

Ì 
 ÍZ§��[ · Î5�ÏZ§0�[ · Î5�ÏÐ           (3.45) 

Donde quedan indicadas las dimensiones de las matrices, siendo ª�, ª�, ª0 el 

número de nodos de los contornos Γ�, Γ�, Γ0 respectivamente. 
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3.5 Aspectos relacionados con la aplicación del MEC. 

3.5.1  Tipos de elementos de contorno. 

A continuación trataremos de definir los tipos de elementos que van a ser usados 

en los modelos correspondientes a los problemas que se sometan a estudio. Únicamente 

dispondremos de dos tipos: 

• Elementos cuadráticos cuadriláteros de nueve nodos. 

• Elementos cuadráticos triangulares de seis nodos. 

Dichos elementos serán representados a continuación. Por lo que respecta a la 

numeración de los nodos, ésta se realizará tal y como se indica en la figura, con la 

finalidad de que se defina la normal saliendo del plano del papel; resulta esto último ser 

un aspecto importante a la hora de definir los elementos con los que discretizar un 

contorno determinado. 

 

Figura 3.4.a Elemento cuadrático cuadrilátero en el dominio cartesiano 3-D y en el dominio transformado. 

Figura 3.4.b Elemento cuadrático triangular en el dominio cartesiano 3-D y en el dominio transformado. 
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La geometría del elemento se aproxima por medio de unas funciones de 

interpolación, también llamadas funciones de forma, a partir de la posición de los nodos 

que forman parte del elemento. Las variables del problema en el interior del mismo, 

también se aproximarán mediante estas funciones de forma a partir del valor que toma 

la variable en los nodos del elemento. Ahora, mostraremos las funciones de forma para 

cada uno de los tipos de elemento utilizados en función de las coordenadas naturales \� 

y \�: 

Para elementos cuadriláteros, las funciones de forma en función de \� ��1 Ñ\1Ñ1 y \2 −1≤\2≤1 son: 

�� 
 14 · \� · �\� − 1� · \� · �\� − 1� �� 
 12 · �1 − \��� · \� · �\� − 1� 

�0 
 14 · \� · �\� � 1� · \� · �\� − 1� �� 
 12 · \� · �\� � 1� · �1 − \��� 

�Ò 
 14 · \� · �\� � 1� · \� · �\� � 1� �Ó 
 12 · �1 − \��� · \� · �\� � 1� 

�Ô 
 14 · \� · �\� − 1� · \� · �\� � 1� �Õ 
 12 · \� · �\� − 1� · �1 − \��� 

                                         �Ö 
 �1 − \��� · �1 − \���                                    (3.46) 

Para elementos triangulares, las funciones de forma en función de \� �0 ≤ \� ≤1 y \2 0≤\2≤1 y \3
1−\1−\2 son: 

�� 
 \� · �2\� − 1� �� 
 \� · �2\� − 1� 

�0 
 \0 · �2\0 − 1� �� 
 4 · \� · \� 

                                �Ò 
 4 · \� · \0 �Ó 
 4 · \� · \0                                (3.47) 

Estas funciones de forma permiten aproximar de forma cuadrática la superficie 

del contorno en 	�, 	�, 	0. De la misma manera, aproximan las variables del problema 

en puntos internos al del elemento. 
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3.5.2 Evaluación de las integrales en el contorno. Singularidades. 

Primeramente, recordar el hecho de que al aplicar el MEC sobre las ecuaciones 

integrales del contorno obteníamos una formulación expresada en sumatorios de 

integrales extendidas a los elementos de contorno. Dicho expresión particularizada para 

medios viscoelásticos, toma la siguiente forma: 

            =� · 
� � ∑  d Z5c · Φ[ e¡ MΓ�¢£��¤� 
� 
 ∑  d Z
c · Φ[ e¡ MΓ�¢£��¤� 5�        (3.48) 

 

Dando un paso más en la ecuación, podríamos rescribirla de la siguiente manera: 

                           =� · 
� � ∑ ¥¦�_ · 
_ 
 ∑ §�_ · 5_££_¤�££_¤�                            (3.49) 

Donde los términos de las matrices son: 

                                       ¥¦�_ 
 ∑ d ~c · �� e© MΓ�F                                         (3.50) 

                                       §�_ 
 ∑ d Tc · �� e© MΓ�F                                         (3.51) 

Siendo 5 el número de elementos a los que el nodo ª pertenece y � su posición 

local en el elemento; por otro lado, estas integrales son las que se deberán evaluar en 

cada uno de los elementos Γ� en los que se ha discretizado el dominio. 

Los términos de las matrices deducidas arriba se pueden obtener cuando el nodo ª es diferente al nodo $ de aplicación de la carga. Para ello, se evaluarán numéricamente 

las integrales usando una cuadratura gaussiana estándar sobre elementos rectangulares. 

Dichas cuadraturas vendrán expresadas en función de las coordenadas naturales \� ��1 Ñ \� Ñ 1� y \� ��1 Ñ \� Ñ 1�, lo cual exige la transformación de las variables 

geométricas que aparecen en las integrales originales a las coordenadas naturales.  

El diferencial MΓ puede expresarse como: 

                          MΓ 
 ² ]�]×Æ 7 ]�]×;² · �\� · �\� 
 |ÙÚ| · �\� · �\�                    (3.52) 
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Siendo |ÙÚ| el jacobiano de la transformación: 

 

Figura 3.5. Transformación de coordenadas para integración numérica. 

Según nos aproximamos a la geometría del contorno se tiene que: 

                                              
]�]×Û 
 ]º]×Û 
 ]Ü]×Û · ��                                        (3.53) 

Por lo que el jacobiano viene dado por: 

                             ² ]�]×Æ 7 ]�]×;² 

ÝÞß
Þà]º;]×Æ · ]ºÊ]×; � ]ºÊ]×Æ · ]º;]×;]ºÊ]×Æ · ]ºÆ]×; � ]ºÆ]×Æ · ]ºÊ]×;]ºÆ]×Æ · ]º;]×; � ]º;]×Æ · ]ºÆ]×;áÞâ

Þã 
 äå�å�å0æ                   (3.54) 

                                        |ÙÚ| 
 çå�� � å�� � å0�                                          (3.55) 

Las componentes del vector normal en cada punto vienen dadas por: 

                                                ª� 
 èÛ|éê|                                                        (3.56) 

Expresando la derivada de # respecto a la normal en el contorno: 

                                                 
]�]_ 
 ]�]ºÛ · ª�                                                (3.57) 
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Por tanto, las integrales a evaluar en función de las coordenadas naturales del 

elemento pueden escribirse de la siguiente manera: 

                             ¥¦�_ 
 d d ~c · �� · |ÙÚ| · M\� · ×;
 ×Æ M\�                              (3.58) 

                              §�_ 
 d d Tc · �� · |ÙÚ| · M\� · M\� ×;
 ×Æ                              (3.59) 

Cuando el punto de colocación $ forma parte del elemento % sobre el que se 

integra, los núcleos ~c y Tc presenta singularidades de tipo ë K��L y ë K ��;L en los 

términos tratados anteriormente. Quiere decir esto que en los términos de las matrices ¥¦�_ y §�_ para los que $ 
 ª, se tiene que: 

                                       ¥¦�_ 
 ∑ d ~c · �� MΓ� e©F                                          (3.60) 

                                        §�_ 
 ∑ d Tc · �� e© MΓ�F                                         (3.61) 

Para llevar a cabo el tratamiento de los términos débilmente singulares në K��Lp 

se deberá seguir un procedimiento que consista en buscar un nuevo sistema de 

referencia donde el subintegrando sea regular. Para ello, el jacobiano entre este sistema 

de referencia y el sistema de coordenadas homogéneo ha de ser ë�#�. Este 

procedimiento puede ser consultado para elementos cuadriláteros mediante Aznárez 

(2002) y para elementos triangulares mediante Domínguez (1993). Este tipo de 

estrategias fueron expuestas por primera vez por Lachat y Watson (1976), siendo 

revisadas posteriormente por Li et al. (1985), Telles (1987) y Cerrolaza y Alarcón 

(1989). 

Por lo que respecta a los términos fuertemente singulares, existen 

procedimientos indirectos (no muy rigurosos) y directos para afrontar el problema, así 

como una amplia bibliografía al respecto. Por lo que respecta a los procedimientos 

indirectos, no existe un procedimiento general indirecto, puesto debe de estudiarse de 

forma independiente la estrategia a seguir para cada problema concreto. 

El procedimiento directo a seguir para la evaluación de este tipo de términos, se 

fundamenta en el hecho de considerar que la singularidad es realmente ficticia, puesto 



 

 

 

58 Influencia de las características de la excitación en la respuesta sísmica de una estructura 

que dicha singularidad se desvanece con la contribución de los elementos adyacentes. 

Para tratar de realizar un estudio en profundidad del procedimiento, puede consultarse 

Aznárez (2002), Chirino et al. (2000) y Cruse (1969). 

 

3.6 Duplicación de nodos en los bordes angulosos. Problema de esquina. 

Hasta ahora se ha estudiado la formulación del MEC para problemas armónicos, 

evaluando las integrales en cada elemento. Una vez dado este paso y acopladas las 

diferentes regiones que forman parte del modelo, imponiendo las condiciones de 

contorno, se ha llegado a un sistema de ecuaciones algebraicas.  

Un aspecto que añade un grado de complejidad al montaje de la matriz global 

del sistema, radica en la situación de unión de dos contornos con borde anguloso, como 

se muestra en la figura: 

 

Figura 3.6. Borde anguloso en un problema de una estructura de contención de aguas plana situada en un 

cañón de sección rectangular. 

Por lo que respecta a las variables derivadas (tensiones en un medio 

viscoelástico y flujo de presiones en un medio escalar), éstas presenta discontinuidad en 
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los nodos del borde, debido a que como un mismo nodo pertenece a elementos de 

contornos diferentes hará que las normales también lo sean. 

Para poder llevar a cabo el montaje de la matriz global del problema, se deberá 

adoptar una estrategia de duplicación de los nodos en el borde de unión entre contornos, 

donde se ubica el problema. La primera consecuencia es que el número de grados de 

libertad del problema ha aumentado; no obstante, esto no constituye un problema 

importante en nuestro modelo puesto que el número de nodos utilizados en la 

discretización es elevado con respecto al número de nodos en los que se presenta el 

problema de borde anguloso. La duplicación de nodos en el borde se efectúa de acuerdo 

a la figura siguiente, prestando especial interés en el nodo central del borde del 

elemento sobre el que nos vamos a centrar: 

 

Figura 3.7. Duplicación de los nodos en los bordes angulosos. Se plantea el problema en una estructura de 

contención de aguas plana situada en un cañón de sección rectangular. 

Primeramente llamaremos ªìMì 1 al nodo duplicado perteneciente al elemento 

del contorno 1 y ªìMì 2 al perteneciente al elemento del contorno 2. Al duplicar el 

nodo las incógnitas también se duplican; por tanto, para el caso de un medio 

viscoelástico tendremos las siguientes incógnitas: 
�, 
�, 5� y 5�. Si se desarrollan las 
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ecuaciones del MEC para los contornos implicados en la imagen y se evalúan las 

integrales numéricamente, llegaremos a un sistema de ecuaciones en el que las 

expresiones correspondientes a la carga concentrada en los nodos duplicados 1 y 2 

puede expresarse de forma matricial como: 

                    í�� · 
� � í�� · 
� � å�� · 5� � å�� · 5� � � 
 î�                   (3.62) 

                   í�� · 
� � í�� · 
� � å�� · 5� � å�� · 5� � � 
 î�                   (3.63) 

El siguiente paso será el de centrar el estudio de estas dos ecuaciones para las 

diversas situaciones que puedan darse a la hora de la imposición de las condiciones de 

contorno, viéndose afectados los nodos duplicados en cuestión. 

Inicialmente se considerará que las condiciones de contorno vienen impuestas en 

términos de tensión en ambos contornos �5� Q 5��. En dicho caso, el vector 

desplazamiento podrá determinarse sin mayor inconveniente a partir del sistema de 

ecuaciones planteado anteriormente. 

Otra de las posibles situaciones que pudieran darse en lo que a imposición de 

condiciones de contorno se refiere, radica en el hecho de conocer el vector tensión para 

el nodo perteneciente al contorno 1 �5�� y el vector desplazamiento  correspondiente al 

contorno 2 �
�� o viceversa; es decir, que se conozca el desplazamiento en el contorno 

1 y la tensión en el contorno 2. En ambos casos, el valor de las incógnitas podrá 

obtenerse a través de la resolución del sistema de ecuaciones. 

El problema se nos manifiesta cuando las condiciones de contorno vienen 

impuestas en términos de desplazamiento para ambos contornos �
� Q 
��. En este caso 

concreto, la sustitución de las condiciones de contorno en el sistema de ecuaciones nos 

conducirá a dos expresiones idénticas, provocando que el sistema de ecuaciones a 

resolver sea singular. Esto se conoce con el nombre de problema de esquina. Dicho 

problema puede presentarse en cualquier esquina que forme parte de contornos interfase 

en algunos casos de interacción entre regiones de distinta naturaleza. 

La técnica a emplear para solucionar este tipo de problema será la de la 

colocación no nodal, la cual consiste en la sustitución de una de las ecuaciones (o 
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ambas) ((3.62) y (3.63)) por otra en la que el punto de colocación se encuentre 

ligeramente desplazado. Así, el punto de colocación no coincide con ningún nodo de la 

discretización, provocando que los coeficientes del sistema sean ligeramente diferentes 

y el sistema de ecuaciones resultante no sea singular. Ver Aznárez (2002). 

 

3.7 Solución al problema de un semiespacio de geometría arbitraria 

acoplado a una estructura y excitado con ondas (Sh, Sv, P ó Rayleigh).  

Para poder llevar a cabo la solución a este problema, consideraremos el caso de 

un semiespacio acoplado a una estructura, tal y como se muestra en la siguiente figura: 

 

Figura 3.8. Semiespacio de geometría arbitraria acoplado a una estructura. 

Seguidamente llamaremos 
� y 5� a los campos de desplazamientos y tensiones 

que son solución al problema del semiespacio de geometría variable acoplado a  una 

estructura excitado por un campo incidente de ondas �ïí, ïð, ñ, Y"Q�*$åí�. Dichas 

soluciones serán consideradas como la superposición de dos problemas: 


? y 5? que se corresponden con los campos de desplazamiento y tensión que son 

solución al problema del semiespacio elástico plano (sin presencia de la estructura).  

ï
*�ì 

ëªM" òª=$M*ª5* 

�J5#
=5
#" 
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Figura 3.9. Problema correspondiente al semiespacio elástico plano. 


ó y 5ó que se corresponden con los campos de desplazamiento y tensión 

producto de la distorsión provocada por las irregularidades de la superficie del 

semiespacio y el acoplamiento de la estructura al problema del semiespacio elástico 

plano. 

Por tanto, la solución del campo de desplazamientos y tensiones en cada punto 

del dominio del problema objeto de estudio puede escribirse como: 

                                               

F 
 
? � 
ó5F 
 5? � 5ó                                                  (3.64) 

Planteando el teorema de reciprocidad sobre 
ó y 5ó para, posteriormente, 

aplicar el MEC a la formulación integral obtenida siguiendo los procedimientos 

descritos con anterioridad, nos conducirá a la siguiente expresión matricial: 

                                                 ¥ · 
ó 
 § · 5ó                                             (3.65) 

Operando adecuadamente con las expresiones de 
F y 5F sobre la expresión 

matricial, podremos volver a rescribir dicha expresión en función de los campos de 

desplazamiento y tensión que son la solución al problema objeto de estudio. Así, se 

tiene que: 

                                      ¥ · �
F � 
?� 
 § · �5F � 5?�                                  (3.66) 

ï
*�ì 

ëªM" òª=$M*ª5* 
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Reordenando los términos de dicha expresión: 

                                   ¥ · 
F � § · 5F 
 ¥ · 
? � § · 5?                                (3.67) 

El lado derecho de la ecuación es totalmente conocido. La resolución de este 

sistema de ecuaciones proporcionará la solución total a los campos de desplazamiento y 

tensión del problema de un semiespacio con geometría arbitraria y excitado mediante 

una onda sísmica.  
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4 Ecuaciones de propagación de las ondas sísmicas 

 

4.1 Introducción. 

A lo largo de este capítulo, trataremos de introducir las ecuaciones que 

gobiernan el fenómeno de la propagación para cada una de las ondas que componen un 

terremoto. Más concretamente, nos centraremos en la primera parte del capítulo en 

deducir dichas expresiones para el caso en el que el plano de propagación se encuentra 

situado perpendicularmente al plano de simetría de la estructura; la segunda parte del 

capítulo centrará el estudio en la deducción de dichas ecuaciones cuando el plano de 

propagación de las ondas tiene un carácter general; es decir, puede incidir sobre el plano 

de simetría de la estructura desde cualquier ángulo que se considere.  

 

4.2 Onda SH 

Partimos de un gráfico inicial, en el cual constataremos la incidencia y reflejo de 

una onda SH sobre una estructura de contención de aguas (presa). Así, tenemos que: 

 

Figura 4.1. Gráfico explicativo para onda SH incidente 

!��� 

ô?õ�  

�� 

!��� 

ô?õ�  

��

Q 

o 
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Una vez realizado el gráfico, introducimos las componentes de los vectores 

propagación �!� y dirección �M� de la onda SH incidente y reflejada respectivamente: 

Para ô?õ� : 

!���: K0, !����, !0���L ÷!���� 
 cos ��!0��� 
 sin ��
± 

M���: KM����, 0, 0L M���� 
 1± 
Para ô?õ� : 

!���: K0, !����, !0���L ÷ !���� 
 cos ��!0��� 
 � sin ��
± 

M���: KM����, 0, 0L M���� 
 1± 
4.2.1 Campo de desplazamientos 

A continuación, deducimos las expresiones del campo de desplazamientos 
�
�, 
�, 
0� 
 
�
, ð, ´�, teniéndose que: 

Ë
 
 M���� · ô?õ� · *-��<�>�û�·�� � M���� · ô?õ� · *-��<�>�Æ�·��ð 
 0´ 
 0 ± 

ä
 
 ô?õ� · *-��<�üýw þû»�w�� þûq� � ô?õ� · *-��<�üýw þÆ»-w�� þÆq�ð 
 0´ 
 0 ± 
Para poder satisfacer cualquier condición de contorno que sea conforme a lo 

largo del “eje y”, será necesario que todas las ondas tengan la misma variación en esa 

dirección, de modo que: 

cos �� 
 cos �� 
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Esto implicará que: 

!���� 
 cos �� 

!0��� 
 � sin �� 

Quedando la expresión final del campo de desplazamientos de la siguiente 

manera: 

ä
 
 ô?õ� · *-��<�üýw þû»�w�� þûq� � ô?õ� · *-��<�üýw þû»-w�� þûq�ð 
 0´ 
 0 ± 
4.2.2 Campo de deformaciones 

Partiendo de la expresión que hace referencia al cálculo de las componentes del 

tensor de pequeñas deformaciones: 

��� 
 12 �
�,� � 
�,�� 

Y así como al tensor propiamente dicho: 

� 
 � 0 ��� ��0��� 0 0�0� 0 0 � 

El siguiente paso será obtener las expresiones para cada uno de los términos del 

tensor: 

��� 
 ��� 
 �� �2�,� � 2�,�� 
 �� �2�,�� 


�,� 
 �M���� · !���� · $/? · ô?õ� · *-��<�>�û�·�� � M���� · !���� · $/? · ô?õ� · *-��<�>�Æ�·�� 

��� 
 ��� 
 �� �2�,� � 2�,�� 
 �� �2�,�� 


�,0 
 �M���� · !0��� · $/? · ô?õ� · *-��<�>�û�·�� � M���� · !0��� · $/? · ô?õ� · *-��<�>�Æ�.�� 
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Llevando a cabo las sustituciones pertinentes, obtenemos las expresiones finales: 

��� 
 12 · �� cos �� · $/? · ô?õ� · *-��<�üýw þû»-w�� þûq�
� cos �� · $/? · ô?õ� · *-��<�üýw þû»-w�� þûq�� 

��0 
 12 · �� sin �� · $/? · ô?õ� · *-��<�üýw þû»-w�� þûq� � sin �� · $/? · ô?õ�
· *-��<�üýw þû»-w�� þûq�� 

4.2.3 Campo de Tensiones 

Vamos a tratar de determinar el campo de tensiones partiendo de la expresión 

inicial de la ley de comportamiento de un material, la cual establece relación entre la 

tensión y la deformación para puntos pertenecientes a dicho material.  

��� 
 2, · ��� � ) · ��� · ��� 

Donde: 


��� 
 1   J$ $ 
 %���    J$ $ ( % ± 
Por lo que respecta al tensor de tensiones: 

� 
 � 0 ��� ��0��� 0 0�0� 0 0 � 

 

Deducimos los términos del tensor de modo que: 

��� 
 ��� 
 ��� 
 ��� 
 ��� 
 � 

��� 
 ��� 
 �
 · ��� 

��� 
 , · K�M���� · !���� · $/? · ô?õ� · *-��<�>�û�·�� � M���� · !���� · $/? · ô?õ� · *-��<�>�Æ�·��L 
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��� 
 ��� 
 �
 · ��� 

��0 
 , · K�M���� · !0��� · $/? · ô?õ� · *-��<�>�û�·�� � M���� · !0��� · $/? · ô?õ� · *-��<�>�Æ�.��L 

Sustituyendo cada término por su valor: 

��� 
 , · �� cos �� · $/? · ô?õ� · *-��<�üýw þû»-w�� þûq�
� cos �� · $/? · ô?õ� · *-��<�üýw þû»-w�� þûq�� 

��0 
 , · �� sin �� · $/? · ô?õ� · *-��<�üýw þû»-w�� þûq� � sin �� · $/? · ô?õ�
· *-��<�üýw þû»-w�� þûq�� 

A continuación, vamos a tratar de obtener el valor de las amplitudes. Para ello, 

debemos de considerar una serie de condiciones tales como: 

El valor de la tensión a nivel superficial debe ser nulo. Esto es: 

� !
ª5ì ä� ( 0Q ( 0o 
 0±  J* =
�!�* �  Î��0 
 0± 
Lo que implica que: 

��0 
 2, · n12 · 
�,0p 
 , · 
�,0 
 0 

�     �1 · sin �� · ô?õ� � 1 · �� sin ��� · ô?õ� 
 0 

Llegados a este punto, introduciremos una nueva condición, la cual será la de 

considerar como unitario el valor de la amplitud para la onda incidente; es decir,  ô?õ� 
 1. De este modo: 

�     � sin �� � sin �� · ô?õ� 
 0 

�      ô?õ� 
 1 
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Una vez obtenidas las amplitudes, introduciremos los valores de éstas en sus 

correspondientes expresiones; esto nos llevará al último paso, el cual será el de obtener 

las expresiones finales del campo deformación y tensión respectivamente (componentes 

simétrica y antisimétrica). 

 

4.3 Onda P 

Inicialmente dispondremos de la siguiente figura, a modo de aclarar toda la 

nomenclatura utilizada e interpretar correctamente el sentido y dirección de los vectores 

implicados en el análisis. 

 

Figura 4.2. Gráfico explicativo para onda P incidente 

Partimos de las expresiones del vector dirección �M� y propagación �!� 

respectivamente para cada una de las ondas que aparecen en el gráfico en función de los 

ejes de referencia ��, Q, o�. Así, tenemos que: 

 

 

Q 

�� 

��
��

ô>�  

ô>�  

ô?��  !���
M��� 

o 

M��� 
!��� !���

M���
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Para ô>� : 

M���: K0, M����, M0���L ÷M���� 
 cos ��M0��� 
 sin ��
± 

!���: K0, !����, !0���L ÷!���� 
 cos ��!0��� 
 sin ��
± 

Para ô>� : 

M���: K0, M����, M0���L ÷ M���� 
 cos ��M0��� 
 � sin ��
± 

!���: K0, !����, !0���L ÷ !���� 
 cos ��!0��� 
 � sin ��
± 

Para ô?�� : 
M���: K0, M����, M0���L ÷M���� 
 � sin ��M0��� 
 � cos ��

± 
!���: K0, !����, !0���L ÷ !���� 
 cos ��!0��� 
 � sin ��

± 
4.3.1 Campo de Desplazamientos 

El siguiente paso será deducir la ecuación que gobierna el campo de 

desplazamientos de la onda P. Así, deduciremos la ecuación para cada una de las 

componentes del vector desplazamiento T: �
�, 
�, 
0� 
 �
, ð, ´�. 


 
 0 

ð 
 M���� · ô>� · *-��:�>�û�·�� � M���� · ô>� · *-��:�>�Æ�·�� � M���� · ô?�� · *-��<�>�;�·�� 
´ 
 M0��� · ô>� · *-��:�>�û�·�� � M0��� · ô>� · *-��:�>�Æ�·�� � M0��� · ô?�� · *-��<�>�;�·�� 
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Una vez deducidas las expresiones del campo de desplazamiento, hemos de 

introducir una serie de condicionantes a modo de tratar de simplificar las expresiones 

anteriores; la primera de ellas, será la de considerar que para que la condición de 

contorno sea constante a lo largo del *%* Q es necesario que: 

/> · !���� 
 /> · !���� 
 /? · !���� 

cos ��=> 
 cos ��=>�����������þû¤þÆ

 cos ��=?     �  cos ��=> 
 cos ��=?cos �� 
 =?=>�� · cos �� 

Esto implicará que: 

!���� 
 cos ��                  M���� 
 cos �� 

   !0��� 
 � sin ��            M0��� 
 � sin ��      
Finalmente: 

!���� 
 cos �� 
 / · cos �� 

!0��� 
 � sin �� 
 �ç1 � /� cos� �� 

M���� 
 � sin �� 
 �ç1 � /� cos� �� 

M0��� 
 � cos �� 
 �/ · cos �� 

4.3.2 Campo de deformaciones 

A continuación, deduciremos el campo de deformaciones a partir de la expresión 

del tensor de pequeñas deformaciones. Así, tenemos que: 

��� 
 12 �
�,� � 
�,�� 
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Dicha expresión relaciona las deformaciones con las componentes del 

desplazamiento en el punto sometido a análisis. Ahora trataremos de deducir cada uno 

de los términos del tensor de deformaciones. 

Partiendo de la siguiente matriz: 

� 
 �0 0 00 ��� ��00 �0� �00� 

Donde: 

Al no existir componente del desplazamiento en el eje X, podemos concluir lo 

siguiente: 

��� 
 ��� 
 ��� 
 ��� 
 ��� 
 � 

Quedando el resto de los términos de la matriz tal y como sigue: 

��� 
 �M���� · !���� · $/> · ô>� · *-��:�>�û�·�� � M���� · !���� · $/> · ô>� · *-��:�>�Æ�·�� � M����
· !���� · $/? · ô?�� · *-��<�>�;�·�� 

�00 
 �M0��� · !0��� · $/> · ô>� · *-��:�>�û�·�� � M0��� · !0��� · $/> · ô>� · *-��:�>�Æ�·�� � M0���
· !0��� · $/? · ô?�� · *-��<�>�;�·�� 

2��0 
 2�0� 
 �KM���� · !0��� � M0��� · !����L · $/> · ô>� · *-��:�>�û�·��
� KM���� · !0��� � M0��� · !����L · $/> · ô>� · *-��:�>�Æ�·��
� KM���� · !0��� � M0��� · !����L · $/? · ô?�� · *-��<�>�;�·�� 

��� 
 �HH � ��� � ��� 
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��� 
 �KM���� · !���� � M0��� · !0���L · $/> · ô>� · *-��:�>�û�·�� � KM���� · !���� � M0��� · !0���L
· $/> · ô>� · *-��:�>�Æ�·�� � KM���� · !���� � M0��� · !0���L · $/? · ô?��
· *-��<�>�;�·�� 

Sustituyendo cada uno de los términos por su valor correspondiente, tenemos 

que: 

��� 
 � cos� �� · $/> · ô>� · *-��:�üýw þû»�w�� þûq� � cos� �� · $/> · ô>�
· *-��:�üýw þû»-w�� þûq� � K�ç1 � R� cos� ��L · �R cos ��� · $/? · ô?��
· *-��<n�V üýw þû�»-Kç�-V; üýw; þûLqp

 

�00 
 � sin� �� · $/> · ô>� · *-��:�üýw þû»�w�� þûq�
� sin� �� · $/> · ô>� · *-��:�üýw þû»-w�� þûq� � �R cos ���
· Kç1 � R� cos� ��L · $/? · ô?�� · *-��<n�V üýw þû�»-Kç�-V; üýw; þûLqp

 

2��0 
 2�0� 
 ��cos �� · sin �� � sin �� · cos ��� · $/> · ô>� · *-��:�üýw þû»-w�� þûq�
� �� cos �� · sin �� � sin �� · cos ��� · $/> · ô>� · *-��:�üýw þû»-w�� þûq�
� ��1 � R� cos� ��� � �R� cos� ���� · $/? · ô?��
· *-��<n�V üýw þû�»-Kç�-V; üýw; þûLqp
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��� 
 ��cos� �� � sin� ��� · $/> · ô>� · *-��:�üýw þû»�w�� þûq� � �cos� �� � sin� ��� · $/>· ô>� · *-��:�üýw þû»-w�� þûq�
� nK�ç1 � R� cos� ��L · �R · cos ��� � �R · cos ���
· Kç1 � R� cos� ��Lp · $/? · ô?�� · *-��<n�V üýw þû�»-Kç�-V; üýw; þûLqp

 

 

4.3.3 Campo de Tensiones 

Una vez determinado el campo de deformaciones, el siguiente paso será deducir 

el campo de tensiones. Para ello, partiremos de la expresión inicial: 

��� 
 2, · ��� � ) · ��� · ��� 

Siendo: 


��� 
 1   J$ $ 
 %��� 
 0   J$ $ ( %± 
Dicha expresión es la denominada ley de comportamiento de un material, la cual 

relaciona la tensión y la deformación en el punto sometido a estudio; por tanto, se 

genera un tensor de tensiones que tiene la siguiente disposición: 

� 
 ���� 0 00 ��� ��00 �0� �00� 

Al igual que sucediera en el campo de deformaciones, hay términos en la matriz 

que se consideran nulas al no existir componente 
 del desplazamiento. Por ello: 

��� 
 ��� 
 ��� 
 ��� 
 � 

A continuación obtendremos el resto de términos de la matriz. Así, tenemos que: 
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��� 
 �) · �KM���� · !���� � M0��� · !0���L · $/> · ô>� · *-��:�>�û�·��
� KM���� · !���� � M0��� · !0���L · $/> · ô>� · *-��:�>�Æ�·��
� KM���� · !���� � M0��� · !0���L · $/? · ô?�� · *-��<�>�;�·��³ 

��� 
 � �) · KM0��� · !0���L � �) � 2,� · KM���� · !����L³ · $/> · ô>� · *-��:�>�û�·��
� �) · KM0��� · !0���L � �) � 2,� · KM���� · !����L³ · $/> · ô>� · *-��:�>�Æ�·��
� �) · KM0��� · !0���L � �) � 2,� · KM���� · !����L³ · $/? · ô?�� · *-��<�>�;�·�� 

�00 
 � �) · KM���� · !����L � �) � 2,� · KM0��� · !0���L³ · $/> · ô>� · *-��:�>�û�·��
� �) · KM���� · !����L � �) � 2,� · KM0��� · !0���L³ · $/> · ô>� · *-��:�>�Æ�·��
� �) · KM���� · !����L � �) � 2,� · KM0��� · !0���L³ · $/? · ô?�� · *-��<�>�;�·�� 

��0 
 2, · ��0 
 �, · KM���� · !0��� � M0��� · !����L · $/> · ô>� · *-��:�>�û�·�� � ,
· KM���� · !0��� � M0��� · !����L · $/> · ô>� · *-��:�>�Æ�·�� � ,
· KM���� · !0��� � M0��� · !����L · $/? · ô?�� · *-��<�>�;�·�� 
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Sustituyendo cada término por su valor: 

��� 
 �) · ¶��cos� �� � sin� ��� · $/> · ô>� · *-��:�üýw þû»�w�� þûq�
� �cos� �� � sin� ��� · $/> · ô>� · *-��:�üýw þû»-w�� þûq�
� nK�ç1 � R� cos� ��L · �R · cos ��� � �R · cos ���
· Kç1 � R� cos� ��Lp · $/? · ô?�� · *-��<n�V üýw þû�»-Kç�-V; üýw; þûLqpÐ 

��� 
 �Z) · sin� �� � �) � 2,� · cos� ��[ · $/> · ô>� · *-��:�üýw þû»�w�� þûq�
� Z) · sin� �� � �) � 2,� · cos� ��[ · $/> · ô>� · *-��:�üýw þû»-w�� þûq�
� �) · �R cos ��� Kç1 � R� cos� ��L � �) � 2,�
· Kç1 � R� cos� ��L �R cos ���³ · $/? · ô?��
· *-��<n�V üýw þû�»-Kç�-V; üýw; þûLqp

 

�00 
 �Z) · cos� �� � �) � 2,� · sin� ��[ · $/> · ô>� · *-��:�üýw þû»�w�� þûq�
� Z) · cos� �� � �) � 2,� · sin� ��[ · $/> · ô>� · *-��:�üýw þû»-w�� þûq�
� �) · �R cos ��� K�ç1 � R� cos� ��L � �) � 2,�
· �R cos ��� Kç1 � R� cos� ��L³ · $/? · ô?��
· *-��<n�V üýw þû�»-Kç�-V; üýw; þûLqp
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��0 
 �0� 
 �,�cos �� · sin �� � sin �� · cos ��� · $/> · ô>� · *-��:�üýw þû»�w�� þûq�
� ,�� cos �� · sin �� � sin �� · cos ��� · $/> · ô>� · *-��:�üýw þû»-w�� þûq�
� ,��1 � R� cos� ��� � �R� cos� ���� · $/? · ô?��
· *-��<n�V üýw þû�»-Kç�-V; üýw; þûLqp

 

Ahora se tratará de obtener el valor de las amplitudes ô>�  y ô?�� . Para ello, 

impondremos condiciones de contorno, las cuales establecen que: 

� !
ª5ì ä� ( 0Q ( 0o 
 0±  J* =
�!�* �  
��0 
 0�00 
 0± 
Así como que la amplitud de la onda incidente P tendrá valor unitario; esto es: 

ô>� 
 1 

Así, tenemos que: 

Establecemos �00 y ��0 en función de �� y �� y, así, poder operar con mayor 

facilidad: 

�00 
 0 
 �Z) · cos� �� � �) � 2,� · sin� ��[ · $/> · *-��:�üýw þû»�
� Z) · cos� �� � �) � 2,� · sin� ��[ · $/> · ô>� · *-��:�üýw þû»�
� Z) · �� sin �� · cos ��� � �) � 2,� · �cos �� · sin ���[ · $/? · ô?��
· *-��<��üýw þ;�»� 

�      0 
 ���) � 2,� · sin� ��� · $/> � ��) � 2,� · sin� ��� · $/> · ô>�� ��) · �sin �� · cos ��� � �) � 2,� · �sin �� · cos ���� · $/? · ô?��  
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�      0 
 ���) � 2,� · sin� ��� � ��) � 2,� · sin� ��� · ô>� � 2, · �sin �� · cos ��� · 1R· ô?��  

�      0 
 � n )2, � sin� ��p � n )2, � sin� ��p · ô>� � 12 · sin 2�� · 1R · ô?��  

�      0 
 � n12 · 1R� � 1 � sin� ��p � n12 · 1R� � 1 � sin� ��p · ô>� � n12 · 1R · sin 2��p
· ô?��  

�      n12 · 1R � cos� ��p · ô>� � n12 · 1R · sin 2��p · ô?�� 
 � 12 · 1R� � cos� ��          �1� 

Por otro lado, haremos lo mismo con ��0: 

��0 
 0 
 �, · �cos �� · sin �� � sin �� · cos ��� · $/> · *-��:�üýw þû»� � ,
· �� cos �� · sin �� � sin �� · cos ��� · $/> · ô>� · *-��:�üýw þû»� � ,
· �sin� �� � cos� ��� · $/? · ô?�� · *-��<��üýw þ;�»� 

�      sin 2�� · ô>� � �sin� �� � cos� ��� · 1R · ô?�� 
 sin 2�� 

�      sin 2�� · ô>� � cos 2�� · 1R · ô?�� 
 sin 2��           �2� 
Por tanto, en términos de �� y �� (véase Achembach (1973)), quedaría: 

n12 · 1R� � cos� ��p · ô>� � n12 · 1R · sin 2��p · ô?�� 
 � 12 · 1R� � cos� �� 

sin 2�� · ô>� � n1R · cos 2��p · ô?�� 
 sin 2�� 
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Generándose un sistema de dos ecuaciones con dos incógnitas (ô>�  y ô?�� �. 

Mediante la aplicación del programa MATLAB, se consigue llegar a la solución del 

sistema de ecuaciones, la cual será: 

ô>� 
 R� · sin 2�� · sin 2�� � cos 2�� � 2R� · cos 2�� · cos� ��R� · sin 2�� · sin 2�� � cos 2�� � 2R� · cos 2�� · cos� �� 

ô?�� 
 4R · sin �� · cos �� · ��1 � 2R� cos� ���2R� · cos 2�� · cos� �� � cos 2�� � R� · sin 2�� · sin 2�� 

Sometemos ambas expresiones a simplificaciones: 

Para ô>� : 

1 � 2R� cos� �� 
 1 � 2 cos� �� 
 1 � cos� �� � cos� �� 

�     1 � cos� �� � cos� �� 
 sin� �� � cos� �� 
 � cos 2�� 

 

Para ô?�� : 

4R · sin �� · cos �� 
 2R · sin 2�� 

2 cos �� � 1 
 cos 2�� 

Por tanto, las expresiones finales son: 

ô>� 
 R� · sin 2�� · sin 2�� � cos� 2��R� · sin 2�� · sin 2�� � cos� 2�� 

ô?�� 
 2R · sin 2�� · cos 2��R� · sin 2�� · sin 2�� � cos� 2�� 

Introduciendo los valores de ô>�  y ô?��  en las expresiones deducidas 

anteriormente, obtenemos las expresiones finales para el campo de desplazamiento, 

deformación y tensión respectivamente (componente simétrica y antisimétrica). 
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4.4 Onda SV 

 

Figura 4.3. Gráfico explicativo para onda SV incidente 

Un primer paso a realizar será el de incorporar las expresiones tanto del vector 

dirección �M�, como del vector propagación �!� para cada uno de los tipos de onda que 

se manifiestan en este caso. Así, tenemos que: 

Para ô?�� : 

!���: K0, !����, !0���L ÷!���� 
 cos ��!0��� 
 sin ��
± 

M���: K0, M����, M0���L ÷ M���� 
 sin ��M0��� 
 � cos ��
± 

Para ô?�� : 

!���: K0, !����, !0���L ÷ !���� 
 cos ��!0��� 
 � sin ��
± 

�� 

o Q

ô?��  ô?��  

�� 
Q 

o 

�� 

��

�� 

M��� 

!��� 
ô>�  

!��� 

M��� 
!��� 

M���
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M���: K0, M����, M0���L ÷M���� 
 � sin ��M0��� 
 � cos ��
± 

Para ô>� : 

!���: K0, !����, !0���L ÷ !���� 
 cos ��!0��� 
 � sin ��
± 

M���: K0, M����, M0���L ÷ M���� 
 cos ��M0��� 
 � sin ��
± 

4.4.1 Campo de Desplazamientos 

Seguidamente pasamos a deducir el campo de desplazamientos. Considerando la 

expresión inicial del vector desplazamiento T�
�, 
�, 
0� 
 �
, ð, ´�,  es importante 

resaltar el hecho de la no existencia de la componente 
� �
� para este tipo de ondas. 

Así, se tiene que: 

� 
 
 0ð 
 M���� · ô?�� · *-��<�>�û�·�� � M���� · ô?�� · *-��<�>�Æ�·�� � M���� · ô>� · *-��:�>�;�·��
´ 
 M0��� · ô?�� · *-��<�>�û�·�� � M0��� · ô?�� · *-��<�>�Æ�·�� � M0��� · ô>� · *-��:�>�;�·�� ± 

Sustituyendo adecuadamente cada término, llegaremos a unas expresiones tales 

como: 


 
 0 

ð 
 sin �� · ô?�� · *-��<�üýw þû»�w�� þûq� � sin �� · ô?�� · *-��<�üýw þÆ»-w�� þÆq� � cos �� · ô>�· *-��:�üýw þ;»-w�� þ;� 

´ 
 � cos �� · ô?�� · *-��<�üýw þû»�w�� þûq�
� cos �� · ô?�� · *-��<�üýw þÆ»-w�� þÆq� � sin �� · ô>� · *-��:�üýw þ;»-w�� þ;q� 
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Siendo: 

�!��� · # 
 !���� · Q � !0��� · o 
 cos �� · Q � sin �� · o!��� · # 
 !���� · Q � !0��� · o 
 cos �� · Q � sin �� · o!��� · # 
 !���� · Q � !0��� · o 
 cos �� · Q � sin �� · o
± 

Para satisfacer cualquier condición de contorno conforme a lo largo del *%* Q, es 

necesario que todas las ondas (incidentes y reflejadas) tengan la misma variación en esa 

dirección.  

Así, para que esto suceda la componente Q del producto ! · # deben igualarse, de 

modo que: 

/? · !���� 
 /? · !���� 
 /> · !���� 
                                                     

üýw þû9< 
 üýw þÆ9<���������þÆ¤þû

 üýw þ;9:           (1) 

El hecho de que �� 
 �� conlleva a las siguientes modificaciones en algunas 

componentes del vector propagación y vector dirección respectivamente.  

!���� 
 !���� !0��� 
 �!0���
M���� 
 �M���� M0��� 
 M0���  

Por otro lado, continuando con lo expuesto en (1): 

cos ��=? 
 cos ��=>  

cos �� 
 =>=? · cos �� 

=>=? 
 ¶2�1 � ��1 � 2� ·� �� 
 1R @ 1 
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Ahora se procederá a estudiar diferentes situaciones que pudieran darse para este 

caso concreto; por ejemplo, una de ellas será la de considerar cos �� 
 1. Esto 

provocará que se genere una onda P incidente y rasante. Dicho caso propiciará que: 

cos �� 
 1 · =?=> 
 R 

Por tanto, la obtención del ángulo crítico deberá producirse mediante: 

cos�9� 
 R 

Donde dicha expresión dependerá del coeficiente de Poisson ���. Así, 

dispondremos la siguiente tabla de valores en donde puede observarse el valor del 

ángulo crítico en función del coeficiente de Poisson: 

� �� �a!�!�^`� " !GG ^�  # $�%�&%'I G� 

0.2 0.612 52.240 

0.3 0.535 57.690 

0.4 0.408 65.910 

0.5 0 90 

En el caso de que �� ( �9�, implicará que: 

cos �� @ 1 

Así como: 

sin �� 
 ç1 � cos� �� 

Esto implica que el problema sea resuelto mediante la utilización de razones 

trigonométricas de carácter complejo, no considerándose como válidas las ecuaciones 

deducidas a lo largo de este apartado. Así, las expresiones del campo de desplazamiento 

deducidas con anterioridad serán válidas para aquellos ángulos de la onda incidente que 

cumplan que: 

�� @ �9� 
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Puesto que en dicho caso podremos tener en cuenta las siguientes 

consideraciones, las cuales hacen referencia a términos del vector de propagación y 

dirección: 

!���� 
 1R · !���� 
 1R cos �� M���� 
 !����

!0��� 
 �)1 � K!����L� 
 �*1 � n1R cos ��p� M0��� 
 !0��� 

Existen algunas peculiaridades en las proximidades del ángulo crítico, pero éstas 

serán estudiadas más adelante. 

4.4.2 Campo de deformaciones 

Recurriendo a la expresión del tensor de pequeñas deformaciones deducido en 

capítulos anteriores, diremos que: 

��� 
 12 �
�,� � 
�,�� 

Siendo esta expresión la encargada de relacionar las deformaciones con las 

componentes del campo de desplazamiento. 

Ahora trataremos de obtener cada uno de los términos de la matriz de 

deformaciones, la cual obedece a la siguiente disposición: 

� 
 �0 0 00 ��� ��00 �0� �00� 

Efectivamente, serán nulos todos aquellos términos que tuvieran algún tipo de 

dependencia de la componente 
 �
�) del vector desplazamiento; de este modo: 

��� 
 2�,� 
 � 

��� 
 ��� 
 �� �2�,� � 2�,�� 
 � 
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��� 
 ��� 
 �� �2�,� � 2�,�� 
 � 

��� 
 
�,� 
 �M���� · !���� · ô?�� · $/? · *-��<�>�û�·�� � M���� · !���� · ô?�� · $/? · *-��<�>�Æ�·��
� M���� · !���� · ô>� · $/> · *-��:�>�;�·�� 

��� 
 ��� 
 �� �2�,� � 2�,�� 


�,0 
 �M���� · !0��� · ô?�� · $/? · *-��<�>�û�·�� � M���� · !0��� · ô?�� · $/? · *-��<�>�Æ�·�� � M����
· !0��� · ô>� · $/> · *-��:�>�;�·�� 


0,� 
 �M0��� · !���� · ô?�� · $/? · *-��<�>�û�·�� � M0��� · !���� · ô?�� · $/? · *-��<�>�Æ�·�� � M0���
· !���� · ô>� · $/> · *-��:�>�;�·�� 

2��0 
 2�0� 
 �KM���� · !0��� � M0��� · !����L · ô?�� · $/? · *-��<�>�û�·��
� KM���� · !0��� � M0��� · !����L · ô?�� · $/? · *-��<�>�Æ�·��
� KM���� · !0��� � M0��� · !����L · ô>� · $/> · *-��:�>�;�·�� 

�00 
 
0,0 
 �M0��� · !0��� · ô?�� · $/? · *-��<�>�û�·�� � M0��� · !0��� · ô?�� · $/? · *-��<�>�Æ�·��
� M0��� · !0��� · ô>� · $/> · *-��:�>�;�·�� 

Por lo que respecta a la dilatación volumétrica: 

��� 
 ��� � ��� � ��� 
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��� 
 �KM���� · !���� � M0��� · !0���L · ô?�� · $/? · *-��<�>�û�·�� � KM���� · !���� � M0��� · !0���L
· ô?�� · $/? · *-��<�>�Æ�·�� � KM���� · !���� � M0��� · !0���L · ô>� · $/>
· *-��:�>�;�·�� 

Ahora sustituiremos cada término por su expresión correspondiente: 

��� 
 � sin �� · cos �� · ô?�� · $/? · *-��<�üýw þû»�w�� þûq� � �sin ���· cos �� · ô?�� · $/? · *-��<�üýw þû»-w�� þûq�

� 1R� cos� ��· ô>� · $/> · *-��:�K�V üýw þûL»-r+�-K �V; üýw; þûLsq�
 

2��0 
 2�0� 
 ��sin� �� � cos� ��� · ô?�� · $/? · *-��<�üýw þû»�w�� þûq�
� �� sin� �� � cos� ��� · ô?�� · $/? · *-��<�üýw þû»-w�� þûq�

� �n1R cos ��p� · n1 � 1R� cos� ��p� · ô>� · $/>

· *-��:�K�V üýw þûL»-r+�-K �V; üýw; þûLsq�
 

�00 
 cos �� · sin �� · ô?�� · $/? · *-��<�üýw þû»�w�� þûq� � cos �� · sin �� · ô?�� · $/?
· *-��<�üýw þû»-w�� þûq� � n1 � 1R� cos� ��p · ô>� · $/>

· *-��:�K�V üýw þûL»-r+�-K �V; üýw; þûLsq�
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��� 
 ��sin �� · cos �� � cos �� · sin��� · ô?�� · $/? · *-��<�üýw þû»�w�� þûq�
� ��� sin ��� · cos �� � cos �� · sin ��� · ô?�� · $/? · *-��<�üýw þû»-w�� þûq�

� �n1R cos ��p� � n1 � 1R� cos� ��p� · ô>� · $/>

· *-��:�K�V üýw þûL»-r+�-K �V; üýw; þûLsq�
 

4.4.3 Campo de tensiones 

Recurriendo a la expresión de la ley de comportamiento de un material, se tiene 

que: 

σ�� 
 2, · ��� � ) · ��� · ��� 

Siendo: 


��� 
 1   J$ $ 
 %��� 
 0   J$ $ ( %± 
 Al igual que ocurriera en el campo de deformaciones, partiremos de un tensor 

de tensiones tal y como se muestra a continuación: 

� 
 ���� 0 00 ��� ��00 �0� �00� 

Donde el cálculo de cada uno de los términos de dicho tensor viene dado por: 

��� 
 ) · ��� 
 �)KM���� · !���� � M0��� · !0���L · ô?�� · $/? · *-��<�>�û�·��
� )KM���� · !���� � M0��� · !0���L · ô?�� · $/? · *-��<�>�Æ�·��
� )KM���� · !���� � M0��� · !0���L · ô>� · $/> · *-��:�>�;�·�� 
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��� 
 ��� 
 2, · ��� 
 0 

��� 
 ��� 
 2, · ��0 
 0 

��� 
 - · ��� � �
 · ��� 

��� 
 ��) · M0��� · !0��� � �) � 2,� · M���� · !����³ · ô?�� · $/? · *-��<�>�û�·��
� �) · M0��� · !0��� � �) � 2,� · M���� · !����³ · ô?�� · $/? · *-��<�>�Æ�·��
� �) · M0��� · !0��� � �) � 2,� · M���� · !����³ · ô>� · $/> · *-��:�>�;�·�� 

��� 
 ��� 
 2, · ��0 

��0 
 �0� 
 �, · KM���� · !0��� � M0��� · !����L · ô?�� · $/? · *-��<�>�û�·��
� ,KM���� · !0��� � M0��� · !����L · ô?�� · $/? · *-��<�>�Æ�·�� � ,
· KM���� · !0��� � M0��� · !����L · ô>� · $/> · *-��:�>�;�·�� 

��� 
 - · ��� � �
 · ��� 

�00 
 ��) · M���� · !���� � �) � 2,� · M0��� · !0���³ · ô?�� · $/? · *-��<�>�û�·��
� �) · M���� · !���� � �) � 2,� · M0��� · !0���³ · ô?�� · $/? · *-��<�>�Æ�·��
� �) · M���� · !���� � �) � ,� · M0��� · !0���³ · ô>� · $/> · *-��:�>�;�·�� 
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Procedemos, al igual que en el caso del campo de deformaciones, con las 

sustituciones de las componentes del vector propagación �!� y dirección �M� 

respectivamente por su expresión algebraica correspondiente, teniéndose que: 

��� 
 �)�sin �� · cos �� � cos �� · sin ��� · ô?�� · $/? · *-��<�üýw þû»�w�� þûq�
� )��� sin ��� · cos �� � cos �� · sin ��� · ô?�� · $/?
· *-��<�üýw þû»-w�� þûq� � ) n 1K� · cos� �� � n1 � 1R� · cos� ��pp · ô>� · $/>

· *-��:�K�V·üýw þûL»-r+�-K �V;·üýw; þûLsq�
 

��� 
 �Z)�� cos �� · sin ��� � �) � 2,��sin �� · cos ���[ · ô?�� · $/?· *-��<�üýw þû»�w�� þûq�
� Z) �cos �� · sin ��� � �) � 2,���sin �� · cos ���[ · ô?�� · $/?
· *-��<�üýw þû»-w�� þûq� � Í) n1 � 1R� cos� ��p � �) � 2,� n 1K� cos� ��pÐ
· ô>� · $/> · *-��:�K�V üýw þûL»-r+�-K �V; üýw; þûLsq�

 

��0 
 �0� 
 �,�sin� �� � cos� ��� · ô?�� · $/? · *-��<�üýw þû»�w�� þûq�
� ,�sin� �� � cos� ��� · ô?�� · $/? · *-��<�üýw þû»-w�� þûq�

� ,/2 n1R cos ��p ��*1 � � 1R� cos� ����0 · ô>� · $/>

· *-��:�K�V üýw þûL»-r+�-K �V; üýw; þûLsq�
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�00 
 �Z)�sin �� · cos ��� � �) � 2,��cos �� · sin ���[ · ô?�� · $/?· *-��<�üýw þû»�w�� þûq�
� Z�)�sin �� · cos ��� � �) � 2,��cos �� · sin ���[ · ô?�� · $/?
· *-��<�üýw þû»-w�� þûq� � Í) n 1K� cos� ��p � �) � 2,� n1 � 1R� cos� ��pÐ
· ô>� · $/> · *-��:�K�V üýw þûL»-r+�-K �V; üýw; þûLsq�

 

4.4.4 Cálculo de las Amplitudes 

El siguiente paso a llevar a cabo, consiste en determinar el valor de las 

amplitudes ô?�� , ô?��  y ô>�  respectivamente. Para ello, debemos considerar como nulas 

las tensiones en la superficie libre; esto es: 

� !
ª5ì ä� ( 0Q ( 0o 
 0±  J* =
�!�* �  
��0 
 0�00 
 0± 
Otras consideraciones a tener en cuenta serán: 

ô?�� 
 1 1R 
 /?/> R 
 />/?  

Por tanto, comenzaremos con �00 
 0 para �o 
 0�: 

0 
 �Z)�sin �� · cos ��� � �) � 2,��cos �� · sin ���[ · ô?�� · $/? · *-��<�üýw þû»�
� Z�)�sin �� · cos ��� � �) � 2,��cos �� · sin ���[ · ô?�� · $/?
· *-��<�üýw þû»� � Í) n 1K� cos� ��p � �) � 2,� n1 � 1R� cos� ��pÐ · ô>�

· $/> · *-��:rK�V üýw þûL»s
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Tras una serie de simplificaciones llegamos a: 

2, · �cos �� · sin��� · $/? � 2, · �cos �� · sin ��� · $/? · ô?��
� Z) · cos� �� � �) � 2,� · sin� ��[ · $/> · ô>� 
 0 

�      , · sin 2�� � , · sin 2�� · ô?�� � �) � 2, sin� ��� · R · ô>� 
 0 

�      sin 2�� � sin 2�� · ô?�� � n), � 2 sin� ��p · R · ô>� 
 0          �2c� 

 Haciendo hincapié en (2*): 

), 
 ), � 2 � 2 
 ) � 2,, � 2 
 n1Rp� � 2 

Volviendo a (2*): 

�      sin 2�� � sin 2�� · ô?�� � Í 1R� � 2 � 2 sin� ��Ð · R · ô>� 
 0 

�       sin 2�� � sin 2�� · ô?�� � Í 1R� � 2 � 2�1 � sin� ���Ð · R · ô>� 
 0 

�       sin 2�� � sin 2�� · ô?�� � 1R · �1 � 2R� · cos� ��� · ô>� 
 0 

�      J$ª 2�� · ô?�� � 1R · �1 � 2R� · =ìJ� ��� · ô>� 
 J$ª 2��          �3c� 

Pasamos ahora a operar con ��0 
 �0� 
 0 para �o 
 0�: 

0 
 �,�sin� �� � cos� ��� · ô?�� · $/? · *-��<�üýw þû»� � ,�sin� �� � cos� ��� · ô?�� · $/?
· *-��<�üýw þû»� � ,/2 n1R cos ��p ��*1 � � 1R� cos� ����0 · ô>� · $/>

· *-��:rK�V üýw þûL»s
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�      0 
 , · �sin� �� � cos� ��� · $/? � , · �sin� �� � cos� ��� · $/? · ô?�� � ,· �� sin �� · cos �� � sin �� · cos ��� · $/> · ô>�  

�      cos 2�� · ô?�� � sin 2�� · R · ô>� 
 � cos 2��           �4c� 

Por tanto, hemos generado un sistema de dos ecuaciones ((3*) y (4*)) a resolver; 

dicha resolución, se llevará a cabo utilizando el programa MATLAB. Así: 

J$ª 2�� · ô?�� � 1R · �1 � 2R� · =ìJ� ��� · ô>� 
 J$ª 2��cos 2�� · ô?�� � R · sin 2�� · ô>� 
 � cos 2��  

ô?�� 
 � �2R� · sin 2�� · sin �� · cos �� � cos 2�� � 2 cos 2�� · R� · cos� ��2R� · sin 2�� · sin �� · cos �� � 2 cos 2�� · R� · cos� �� � cos 2��  

ô>� 
 �2 cos 2�� · R · sin 2��2R� · sin 2�� · sin �� · cos �� � 2R� · cos 2�� · cos 2�� � cos 2�� 

Procedemos a realizar algunas simplificaciones: 

En el denominador de ô>� : 

2R� · sin 2�� · sin �� · cos �� � 2R� · cos 2�� · cos 2�� � cos 2�� 

�      R� · sin 2�� · sin 2�� � cos 2�� · ��1 � 2R� cos� ��� 

�      R� · sin 2�� · sin 2�� � cos� 2�� 

En el numerador de ô?�� : 

2R� · sin 2�� · sin �� · cos �� � cos 2�� � 2 cos 2�� · R� · cos� �� 

�      R� · sin 2�� · sin 2�� � cos 2�� · �1 � 2R� · cos� ��� 

�      R� · sin 2�� · sin 2�� � cos� 2�� 
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En el numerador de ô>� : 

�2 cos 2�� · R · sin 2�� 

�     �R · sin 4�� 

Finalmente, las expresiones finales de las amplitudes de las ondas reflejadas 

serán: 

ô?�� 
 R� · sin 2�� · sin 2�� � cos� 2��R� · sin 2�� · sin 2�� � cos� 2��           �3.1� 

ô>� 
 � R · sin 4��R� · sin 2�� · sin 2�� � cos� 2��           �4.1� 

A continuación, representaremos mediante gráficas la evolución que 

experimentan estas amplitudes para un rango de valores de �� comprendido entre 0º y 

90º. Así, tenemos que: 

 

Figura 4.4. Onda SV reflejada. Parte real. 
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Figura 4.5. Onda SV reflejada. Parte imaginaria. 

 

Figura 4.6. Onda SV reflejada. Módulo. 
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Figura 4.7. Onda P reflejada. Parte real. 

 

 

Figura 4.8. Onda P reflejada. Parte imaginaria. 
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Figura 4.9. Onda P reflejada. Módulo. 

Quedan aquí representadas, a través de estas 6 gráficas, diferentes valores de la 

amplitud para la incidencia de una onda SV variable. En dichas gráficas, se presentan la 

parte real, imaginaria y el módulo para cada onda reflejada. Los resultados han sido 

valorados en función del coeficiente de Poisson, cuyo rango de valores varía entre 0,1 � 0,4. En lo que se refiere al análisis de las gráficas, podemos observar las 

variaciones que se producen en el valor de la amplitud para valores del ángulo crítico 

(en función de cada coeficiente de Poisson), así como en las inmediaciones del mismo. 

También pueden observarse los cambios de modo tanto para la onda SV como para la 

onda P. decir que estos cambios de modo se producen sólo a partir de ciertos valores del 

coeficiente de Poisson. Se entiende bien el cambio de modo en la respuesta de la 

estructura visto el cambio en las amplitudes del campo incidente por encima y por 

debajo del ángulo crítico. 

4.4.5 La onda SV y el ángulo crítico 

Ahora se comentarán algunas “cositas” que hacen referencia a este tipo de onda 

(SV) y lo que ocurre en las proximidades de la singularidad del ángulo crítico. Así, 

diremos que: 



 

 

 

97 Ecuaciones de propagación de las ondas sísmicas 

En el caso de que la onda SV incidente provocara el reflejo de una onda SV y 

una onda P rasante, implicaría que: 

cos�� 
 1 

sin �� 
 0 

Por tanto, esto conllevará que: 

cos �� 
 1R · cos�� 

�      cos �9� 
 R 

Particularizando las expresiones (3.1) y (4.1) para este caso concreto (onda P 

rasante), ocurre que: 

ô?�� 
 � cos� 2��cos� 2�� 
 �1 

 

ô>� 
 � R · sin 4��cos� 2��  

Ahora se tendrán en cuenta las siguientes simplificaciones: 

cos 4�� 
 4 sin�� · cos �� · �cos� �� � sin� ��� 

cos� 2�� 
 �cos� �� � sin� ���� 

Además, el hecho de que cos �� 
 R implicará que: 

sin �� 
 ç1 � R� 

De modo que: 

sin 4�� 
 4R · Kç1 � R�L · �2R� � 1� 
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cos� 2�� 
 �2R� � 1�� 

Por tanto, tras realizar las simplificaciones necesarias, las expresiones 

particularizadas tanto de (3.1) como (4.1) quedarán reducidas a: 

ô?�� 
 �1 

ô>� 
 � 4R�√1 � R� · �2R� � 1��2R� � 1�� 
 � 4R�√1 � R�2R� � 1  

Vamos a estudiar ahora el caso en el que �� ( �9�, lo cual nos obligaba a utilizar 

razones trigonométricas de carácter complejo; el hecho de que el ángulo de incidencia �� sea menor que el ángulo crítico �9� implica que: 

cos �� @ R 

Lo que conlleva a que: 

cos �� 
 1R · cos �� @ 1   �J$ªå
�"#� 

sin �� 
 P$* 1R� cos� �� � 1   �$�"å$ª"#$ì !
#ì� 

Ahora introduciremos el valor de sin �� y cos �� en las expresiones obtenidas 

para ô?��  y ô>�  anteriormente (expresiones (3.1) y (4.1)). 

ô?�� 
 R� · sin 2�� · sin 2�� � cos� 2��R� · sin 2�� · sin 2�� � cos� 2�� 

ô?�� 
 R� · sin 2�� · 2 · sin �� · cos �� � cos� 2��R� · sin 2�� · 2 · sin �� · cos �� � cos� 2�� 

ô?�� 
 P2R� · sin 2�� · �V · cos �� · + �V; üýw; þû-� $ � cos� 2��
P2R� · sin 2�� · �V · cos �� · + �V; üýw; þû-� $ � cos� 2��
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Se trata de un cociente entre dos complejos conjugados, donde: 

ô?�� 
 � " � 2$" � 2$ 
Donde: 

" 
 cos� 2��2 
 P2R� · sin 2�� · �V · cos �� · + �V; üýw; þû-� 

Operando: 

ô?�� 
 � �" � 2$� · �" � 2$��" � 2$� · �" � 2$� 
 � "� � 2�"� � 2� � 22""� � 2� $ 
|ô?�� | 
 �"� � 2��� � 42�"��"� � 2��� 
 "� � 22�"� � 2��"� � 2��� 
 �"� � 2����"� � 2��� 
 1 

Lo que nos lleva a concluir que para �� ( �9� se cumple que: 

|ô?�� | 
 1 

Por otro lado: 

ô>� 
 � R · sin 4��R� · sin 2�� · 2 sin �� cos �� � cos� 2�� 

ô>� 
 � R · sin 4��P2R� · sin 2�� · �V·üýw þû·+ Æ3; 45z; 6û $ � cos� 2�� 

ô>� 
 � R · sin 4��P2 · sin 2�� · cos �� · çcos� �� � R�  $ � cos� 2�� 

Se trata de un número complejo, el cual no vamos a someter a más 

simplificaciones; por otro lado, podemos ver a qué tipo de ondas conducen estas 

expresiones. Para ello, recurriremos a las expresiones del campo de desplazamiento: 
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� 
 
 0ð 
 M���� · ô?�� · *-��<�>�û�·�� � M���� · ô?�� · *-��<�>�Æ�·�� � M���� · ô>� · *-��:�>�;�·��
´ 
 M0��� · ô?�� · *-��<�>�û�·�� � M0��� · ô?�� · *-��<�>�Æ�·�� � M0��� · ô>� · *-��:�>�;�·�� ± 

Donde: 

ô?�� 
 1 

ô?��  y ô>�  son números complejos. 

�� ( �9� 

Por otro lado: 

�!��� · # 
 !���� · Q � !0��� · o 
 cos �� Q � sin ��o!��� · # 
 !���� · Q � !0��� · o 
 cos �� Q � sin �� o!��� · # 
 !���� · Q � !0��� · o 
 cos �� Q � sin �� o
± 

Como puede verse, no hay ningún problema con !��� · #  y  !��� · #; en cambio, 

existen inconvenientes con el término correspondiente a la onda P reflejada. Véase que: 

 ð́ ¢ 
 ÷M����
M0���7 · ô>� · *-��:�üýw þ;»-w�� þ;q� 

 ð́ ¢ 
 
 cos ��� sin ��8 · ô>� · *-��:�üýw þ;»-w�� þ;q� 

  ð́ ¢ 

� �V cos ��

P$ · ��1� · +1 R�� cos� �� � 19 · ô>� · *-��:�KÆ3·üýw þûL»-�P��r+ Æ3; üýw; þû-�sq�
  

 

Adoptaremos como solución el valor negativo de la parte imaginaria ��$� del 

número complejo; así, tenemos que: 
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  ð́ ¢ 

ÝÞß
Þà 1R cos ��

$ * 1R� cos� �� � 1áÞâ
Þã · ô>� · *-��:�K�V üýw þûL»�� r+ �V; üýw; þû-�sq�

 

 ð́ ¢ 

ÝÞß
Þà 1R cos ��

$ * 1R� cos� �� � 1áÞâ
Þã · ô>� · *�:r+ ��; üýw; þû-�sq · *-��:K�V üýw þûL» 

Considerando que  
�V 
 �<�:, tenemos que: 

 ð́ ¢ 

ÝÞß
Þà 1R cos ��

$ * 1R� cos� �� � 1áÞâ
Þã · ô>� · *×q · *-���<·üýw þû�» 

Siendo: 

\ 
 /> · * 1R� cos� �� � 1    : ; 

Tras haber estado operando con las expresiones del campo de desplazamiento 

con el fin de averiguar el tipo de onda que le corresponde, se concluye que se trata de 

una onda que se propaga en dirección del “*%* Q” (rasante), con desplazamientos en 

dirección “Q” y “ o”, desfasados 90° y en amplitud compleja ô>�  que decrece con la 

profundidad según \.  

Finalmente y a modo de sacar una conclusión sobre cómo tratar este tipo de 

casos, diremos que se deberá de considerar !��� y M��� siempre como complejos para 

casos en los que �� ( �9�. Dicho de otra forma: 
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!��� 
 ä 0cos ��� sin ��æ 

ÝÞß
Þà 01 R� · cos ��

$ * 1R� cos� �� � 1áÞâ
Þã

 

M��� 
 ä 0cos ��� sin ��æ 

ÝÞß
Þà 01 R� · cos ��

$ * 1R� cos� �� � 1áÞâ
Þã

 

Estas expresiones serán introducidas directamente en las ecuaciones del campo 

de desplazamiento y, posteriormente, de la tensión, obviando la posibilidad de deducir 

unas expresiones nuevas. 

4.5 Onda Rayleigh 

Partiendo del siguiente gráfico inicial: 

 

Figura 4.10. Onda de Rayleigh. Gráfico explicativo. 

Inicialmente, realizaremos una serie de suposiciones en las expresiones del 

campo de desplazamientos en virtud de lo reflejado en el gráfico. Así, se tiene que: 

o Q 

Movimiento de la 

partícula 
) 

Dirección de 

propagación 

Perfil de 

la onda 
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ä 
 
 0ð 
 ô · *>q · *�V�?F-»�´ 
 @ · *>q · *�V�?F-»� ± 
Ahora trataremos de comprobar que estas ecuaciones satisfacen las ecuaciones 

de gobierno de la Elastodinámica. Para ello, partiremos de la expresión de Navier: 

§ · 1�
 � �) � §� · 1�1
� 
 � · 
�  
Particularizando para cada componente del campo de desplazamientos, 

obtenemos tres ecuaciones tales que: 

§ · r��
��� � ��
�Q� � ��
�o�s � �) � §� · r��
��� � ��ð���Q � ��´���os 
 � · 
�  
§ · r��ð��� � ��ð�Q� � ��ð�o�s � �) � §� · r ��
�Q�� � ��ð�Q� � ��´�Q�os 
 � · ð�  

§ · r��´��� � ��´�Q� � ��´�o� s � �) � §� · r ��
�o�� � ��ð�o�Q � ��´�o� s 
 � · �́  
Calculamos cada uno de los términos expuestos en las expresiones anteriores: 

Todos aquellos términos relacionados con la componente 
 del campo de 

desplazamientos son nulos. 

��ð��� 
 0 

��ð�Q� 
 �R� · ô · *>q · *�V�?F-»� 

��ð�o� 
 2� · ô · *>q · *�V�?F-»� 
��´��� 
 0 



 

 

 

104 Influencia de las características de la excitación en la respuesta sísmica de una estructura 

��´�Q� 
 �R� · @ · *>q · *�V�?F-»� 

��´�o� 
 2� · @ · *>q · *�V�?F-»� 
��´�Q�o 
 �$R · 2 · @ · *>q · *�V�?F-»� 

��ð�o�Q 
 �2 · $R · ô · *>q · *�V�?F-»� 
Ahora sustituimos en la ecuación de Navier particularizada para cada 

componente del campo de desplazamientos: 

§��R�ô · *>q · *�V�?F-»� � 2�ô · *>q · *�V�?F-»��
� �) � §���R�ô · *>q · *�V�?F-»� � $R2 · @ · *>q · *�V�?F-»��

 ��8�ô · *>q · *�V�?F-»� 

§��R�@ · *>q · *�V�?F-»� � 2�@ · *>q · *�V�?F-»��
� �) � §���$R2 · ô · *>q · *�V�?F-»� � 2�@ · *>q · *�V�?F-»��

 ��8�@ · *>q · *�V�?F-»� 

Tratando de simplificar las expresiones, se tiene que: 

§��R�ô � 2�ô� � �) � §���R�ô � $R2 · @� 
 ��8�ô 

§��R�@ � 2�@� � �) � §���$R2 · ô � 2�@� 
 ��8�@ 

Sacamos factor común A y B: 

��R�§ � 2�§ � R��) � §� � �8��ô � $R2�) � §�@ 
 0 

�$R2�) � §�ô � ��R�§ � 2�§ � 2��) � §� � �8��@ 
 0 
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Z2�§ � R��) � 2§� � �8�[ô � $R2�) � §�@ 
 0 

�$R2�) � §�ô � Z2��) � 2§� � R�§ � �8�[@ 
 0 

Buscamos una solución al sistema diferente de la trivial (es decir, que A y B 

tengan valor nulo); por tanto, trataremos de comprobar que valores de b provocan que 

las expresiones anteriores sean nulas; por ello: 

A2�§ � R��) � 2§� �$R2�) � §��$R2�) � §� 2��) � 2§� � R�§ � �8�A 
 0 

Hallamos el determinante: 

Z2�§ � R��) � 2§�[ · Z2��) � 2§� � R�§ � �8�[ � Z$R2�) � §�[� 
 0 

Dividiendo todo el determinante por �, se tiene que: 

Í2� n§�p � R� n) � 2§� p � 8�Ð ô � $R2 n) � §� p@ 
 0 

�$R2 n) � §� p ô � Í2� n) � 2§� p � R� n§�p � 8�Ð@ 
 0 

De modo que: 

�2�N?� � R�N>� � 8��ô � K$R2�N>� � N?��L@ 
 0 

K�$R2�N>� � N?��L ô � �2�N>� � R�N?� � 8��@ 
 0 

Así: 

K2�N?� � R��N� � N>��L ô � K$R2�N>� � N?��L@ 
 0     �1� 

K�$R2�N>� � N?��L ô � K2�N>� � R��N� � N?��L@ 
 0     �2� 
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Ahora volvemos a calcular el determinante: 

¬2�N?� � R��N� � N>��® · ¬2�N>� � R��N� � N?��® � R�2��N>� � N?��� 
 0 

2�N?�N>� � 2�R�N?��N� � N?�� � 2�R�N>��N� � N>�� � R��N� � N>���N� � N?��
� R�2��N>� � N?��� 
 0 

2��N?�N>�� � 2� �R�N?��N� � N?�� � R�N>��N� � N>�� � R��N>� � N?���³
� R��N� � N>���N� � N?�� 
 0 

Vamos a identificar términos a fin de obtener las soluciones de b. Por ello, 

tenemos que: 

�2� � ª2� � � 
 0 

� 
 N?�N>� 

ª 
 R� �N?��N� � N?���N>��N� � N>�� � �N>� � N?���³ 
� 
 R��N� � N>���N� � N?�� 

Operando en “ª”: 

ª 
 R�¬N?�N� � N?� � N>�N� � N>� � �N>� � 2N>�N?� � N?��® 
ª 
 R�¬N?�N� � 2N?� � N>�N� � 2N>� � 2N>�N?�® 

Buscamos las soluciones de “2”: 

2� 
 �R�¬N?�N� � 2N?� � N>�N� � 2N>� � 2N>�N?�® P √"2N?�N>�  

Siendo: 

" 
 R��N?�N� � 2N?� � N>�N� � 2N>� � 2N>�N?��� � 4N?�N>�R��N� � N>���N� � N?�� 
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 Por tanto, reubicando el valor de “"”: 

2� 
 �R�¬N?�N� � N>�N� � 2N>�N?�® P R�+¬N?��N� � N>�� � N>��N� � N?��®�
2N?�N>�  

Existen 2 posibles soluciones: 

2�� 
 �R�¬N?�N� � N>�N� � 2N>�N?�® � R�¬N?��N� � N>�� � N>��N� � N?��®2N?�N>�  

2�� 
 �R�¬N?�N� � N>�N� � 2N>�N?�® � R�¬N?��N� � N>�� � N>��N� � N?��®2N?�N>�  

Operando correctamente con las soluciones: 

2�� 
 R�¬�2N>�N� � 2N>�N?�®2N?�N>�  

2�� 
 R�¬�2N?�N� � 2N>�N?�®2N?�N>�  

2�� 
 R� r1 � N�N?�s 

2�� 
 R� · r1 � N�N>�s 

Volvemos a retomar el sistema de ecuaciones �1� y �2�, teniéndose que: 

K2�N?� � R��N� � N>��L ô � K$R2�N>� � N?��L@ 
 0     �1� 

K�$R2�N>� � N?��L ô � K2�N>� � R��N� � N?��L@ 
 0     �2� 

Tomando �1�: 

K2�N?� � R��N� � N>��L � K$R2�N>� � N?��L n@ôp 
 0 
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Tomando las raíces positivas de la solución �2�: 

Para 2 
 2�: 

¶R� r1 � N�N?�s N?� � R��N� � N>��· � $R ¸R r1 � N�N?�sÆ;¹ �N>� � N?�� n@ôp 
 0 

R��N?� � N�� � R��N� � N>�� � $R� r1 � N�N?�sÆ; �N>� � N?�� n@ôp 
 0 

R�N?� � R�N� � $R� r1 � N�N?�sÆ; �N>� � N?�� n@ôp 
 0 

�R��N>� � N?�� � $R��N>� � N?�� r1 � N�N?�sÆ; n@ôp 
 0 

�1 � $ r1 � N�N?�sÆ; n@ôp 
 0 

@ô 
 1
�$ n1 � N�N?�pÆ; 
 $R

R n1 � N�N?�pÆ; 
 $R2�  

n@ôp� 
 $R2�  

Para 2 
 2�: 

¶R� r1 � N�N>�s N?� � R��N� � N>��· � $R2��N>� � N?�� n@ôp 
 0 

R� rN?� � N� N?�N>�s � R��N� � N>�� � $R2��N>� � N?�� n@ôp 
 0 

R� ¶N?� � N� N?�N>� � N� � N>�· � $R2��N>� � N?�� n@ôp 
 0 
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R� ¶��N>� � N?�� � N� r1 � N?�N>�s· � $R2��N>� � N?�� n@ôp 
 0 

�R��N>� � N?�� � R�N� rN>� � N?�N>� s � $R2��N>� � N?�� n@ôp 
 0 

�R � R N�N>� � $2� n@ôp 
 0 

R r�1 � N�N>�s � $2� n@ôp 
 0 

@ô 
 �R n�1 � N�N>�p
�$2� 
 R n1 � N�N>�p

�$2�  

n@ôp� 
 R� n1 � N�N>�p
�$2�R 
 2���$2�R 
 � 2�$R 

n@ôp� 
 � 2�$R  

Por tanto, podemos concluir que existe una relación entre las amplitudes que 

depende de los valores de 2, que aportan una solución al problema diferente de la 

trivial. Además, garantizamos con ello que las expresiones del campo de 

desplazamientos satisfacen las ecuaciones de gobierno de la Elastodinámica, 

obteniéndose que: 

Ýß
à 
 
 0ð 
 ô� · *>Æq · *�V�?F-»� � ô� · *>;q · *�V�?F-»�

´ 
 $R2� · ô� · *>Æq · *�V�?F-»� � 2�$R · ô� · *>;q · *�V�?F-»� ± 
4.5.1 Cálculo de las amplitudes 

Ahora aplicaremos condiciones de contorno en la superficie ���� 
 0�. Esto 

conllevará lo siguiente: 
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� !
ª5ì ä� ( 0Q ( 0o 
 0±      
�»q 
 0�qq 
 0± 
�»q 
 2, · �»q 
 0 

�qq 
 2, · �qq � ) · ��� 
 0 

Siendo: 

�»q 
 12 n�ð�o � ��́Q p 

�qq 
 ��́o  

��� 
 n�
�� � �ð�Q � ��́o p 

Calculamos las derivadas: 

�
�� 
 �
�Q 
 �
�o 
 �ð�� 
 ��́� 
 0 

�ð�Q 
 �$R�ô� · *>Æq � ô� · *>;q� · *�V�?F-»� 

��́o 
 r$R · ô� · *>Æq � 2��$R · ô� · *>;qs · *�V�?F-»� 
�ð�o 
 �2� · ô� · *>Æq � 2� · ô� · *>;q� · *�V�?F-»� 

��́Q 
 rR�2� · ô� · *>Æq � 2� · ô� · *>;qs · *�V�?F-»� 
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Ahora pasamos a realizar la sustitución de las derivadas en las expresiones 

anteriores: 

��� 
 �
 · �� n¯B¯� � ¯C¯�p 
 � 

�    �»q 
 , · ¶�2� · ô� · *>Æq � 2� · ô� · *>;q� · *�V�?F-»�

� rR�2� · ô� · *>Æq � 2� · ô� · *>;qs · *�V�?F-»�· 
 0 

�    2� · ô� · *>Æq � 2� · ô� · *>;q � R�2� · ô� · *>Æq � 2� · ô� · *>;q 
 0 

�    2� · ô� · *>Æq r1 � R�2�� s � 2 · 2� · ô� · *>;q 
 0 

�     2� · ô� · r1 � R�2�� s � 2 · 2� · ô� 
 0      �1c� 

��� 
 �
 · ¯C̄� � - · n¯2¯H � ¯B¯� � ¯C̄�p 
 � 

�     �qq 
 2, r$R · ô� · *>Æq � 2��$R · ô� · *>;qs · *�V�?F-»� � )
· ¶�$R�ô� · *>Æq � ô� · *>;q� � r$R · ô� · *>Æq � 2��$R · ô� · *>;qs·
· *�V�?F-»� 
 0 

�     2, r$R · ô� · *>Æq � 2��$R · ô� · *>;qs � ) r�$R · ô� · *>;q � 2��$R · ô� · *>;qs 
 0 

�     2$R · ô� · , · *>Æq � 2 2��$R · ô� · , · *>;q � $R · ô� · ) · *>;q � 2��$R · ô� · ) · *>;q 
 0 
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�     �2$R · , · *>Æq� · ô� � r2 2��$R · , · *>;q � $R · ) · *>;q � 2��$R · ) · *>;qs · ô� 
 0 

�     2$R · , · *>Æq · ô� � ¶�2 2��R� , � ) � 2��R� )· $R · *>;q · ô� 
 0 

�     2, · *>Æq · ô� � ¶2��R� �2, � )� � )· · *>;q · ô� 
 0 

�     2, · *>Æq · ô� � ¶2, · 2��R� � ) r1 � 2��R�s· · *>;q · ô� 
 0 

�     2, · ô� � ¶2, · 2��R� � ) r1 � 2��R�s· · ô� 
 0     �2c� 

Trabajando con �1c� y �2c�: 

DD2� r1 � R�2�� s 22�
2, 2, · 2��R� � ) r1 � 2��R�sDD 
 0 

Si E? 
 ?;
?<;  y  E> 
 ?;

?:; , entonces se tiene que: 

R�2�� 
 11 � N� N?�� 
 11 � E?
2��R� 
 1 � N�N>� 
 1 � E>

 

�     F2� · n1 � 11 � E?p 22�2, 2,�1 � E>� � )�1 � 1 � E>�F 
 0 

�      F2� n1 � E? � 11 � E? p 22�2, 2,�1 � E>� � )E>
F 
 0 



 

 

 

113 Ecuaciones de propagación de las ondas sísmicas 

�      F2� n2 � E?1 � E?p 22�2, 2,�1 � E>� � )E>
F 
 0 

�     �1 � E?�-� · 2�, · DD�2 � E?� 2 2�2� �1 � E?�
2 2�1 � E>� � ), E>

DD 
 0 

�     �2 � E?� · Í2�1 � E>� � ), E>Ð��������������º Fé�I�_J
� 4 2�2� �1 � E?�����������º Fé�I�_J


 0 

Ahora trabajaremos con los dos términos de esta última expresión por separado, 

con el fin de simplificar la expresión final. Primeramente, por un lado: 

2�1 � E>� � ), E> 

Donde: 

ï$  ± N?� 
 ,�
N>� 
 ) � 2,� áâ

ã  ), 
 N>� � 2N?�N?�  

�     ), 
 rN>�N?� � 2s    J$*ªMì  N>�N?� 
 E? · 1E> 

Por tanto, volviendo al 1º término de la ecuación: 

2�1 � E>� � ), E> 

�     2�1 � E>� � rE?E> � 2s E> 

�     2�1 � E>� � �E? � 2E>� 

�      2 � 2E> � E? � 2E> 
 2 � E? 



 

 

 

114 Influencia de las características de la excitación en la respuesta sísmica de una estructura 

Por otro lado, tenemos el 2º miembro de la ecuación anterior: 

4 2�2� �1 � E?� 

Donde: 

2�2� 
 �1 � E>�Æ;
�1 � E?�Æ;  

Volviendo al 2º término: 

4 2�2� �1 � E?� 

4�1 � E>�Æ; · �1 � E?�Æ; 

Finalmente, volvemos a rescribir la ecuación de modo que: 

�2 � E?�� � 4�1 � E>�Æ; · �1 � E?�Æ; 
 0 

La cual denominaremos ecuación característica.  

Por tanto, el sistema de ecuaciones de ô� y ô� quedaría como: 

ÝÞß
Þà 2� r1 � R�2�� s · ô� � 22� · ô� 
 0

2, · ô� � ¶2, 2��R� � ) r1 � 2��R�s· · ô� 
 0± 

ä�2 � E?� · ô� � 2�1 � E>�Æ; · �1 � E?�Æ; · ô� 
 02 · ô� � �2 � E?� · ô� 
 0 ± 
Si consideramos que el valor de la amplitud de la onda de Rayleigh incidente es 

de valor unitario, obtendremos el valor de ô�: 
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Si ô� 
 1: 

ä�2 � E?� · 1 � 2�1 � E>�Æ; · �1 � E?�Æ; · ô� 
 02 · 1 � �2 � E?� · ô� 
 0 ±    �   ô� 
 � n 22 � E?p  

Por tanto, a modo de tratar de generalizar las expresiones del campo de 

desplazamientos: 

� 
 
 0ð 
 KM���� · ô� · *>Æq � M���� · ô� · *>;qL · *-�V»
´ 
 KM0��� · ô� · *>Æq � M0��� · ô� · *>;qL · *-�V»

± 
Donde: 

Para ôKL� 
 ô�: 

M���: K0, M����, M0���L Ë M���� 
 1
M0��� 
 $R2�

± 
Para ôKL� 
 ô�: 

M���: K0, M����, M0���L Ë M���� 
 1
M0��� 
 � 2�$R± 

También se conocen los valores de 2� y 2�: 

2� 
 R · ç1 � E?                2� 
 R · +1 � E> 

Volviendo a rescribir las ecuaciones del campo de desplazamientos donde 

aparecen todos los términos sustituidos, se tiene que: 

ÝÞß
Þà 
 
 0ð 
 ô� · *-�V�»���ç�-M<�q� � ô� · *-�V�»���ç�-M:�q�

´ 
 r$ · 1ç1 � E?s · ô� · *-�V�»���ç�-M<�q� � n$ · +1 � E>p · ô� · *-�V�»���ç�-M:�q� ± 
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4.5.2 Campo de deformaciones 

Partiendo de la expresión que hace mención al tensor de pequeñas 

deformaciones: 

��� 
 12 �
�,� � 
�,�� 

Calcularemos cada uno de los términos del tensor de deformaciones para este 

tipo de onda, el cual obedece a la siguiente disposición: 

��� 
 �0 0 00 ��� ��00 �0� �00� 

Así, calculamos cada término por separado: 

��� 
 �ð�Q 
 �$R Kô� · *-�V�»���ç�-M<�q� � ô� · *-�V�»���ç�-M:�q�L 

�00 
 ��́o 
 �Rç1 � E?� r$ 1ç1 � E?s · ô� · *-�V�»���ç�-M<�q�

� nR+1 � E>p n$+1 � E>p · ô� · *-�V�»���ç�-M:�q� 

�     �00 
 $R · ô� · *-�V�»���ç�-M<�q� � $R�1 � E>� · ô� · *-�V�»���ç�-M:�q� 

��� 
 ��� 
 �� n¯B¯� � ¯C¯�p 

��0 
 �0� 
 12 ¶rRç1 � E? � Rç1 � E?s · ô� · *-�V�»���ç�-M<�q� � n2R+1 � E>p · ô�
· *-�V�»���ç�-M:�q�· 

��� 
 ��� � ��� � ��� 
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��� 
 �$Rô� · *-�V�»���ç�-M<�q� � $Rô� · *-�V�»���ç�-M:�q� � $Rô� · *-�V�»���ç�-M<�q�
� $R�1 � E>�ô� · *-�V�»��ç�-M:�q� 

�     ��� 
 �$Rô� · *-�V�»���ç�-M:�q� � $R�1 � E>�ô� · *-�V�»���ç�-M:�q� 
4.5.3 Campo de Tensiones 

Para llevar a cabo la obtención del campo de tensiones, hemos de recurrir a la 

expresión de la ley de comportamiento del material, la cual establece que: 

��� 
 2, · ��� � ) · ��� · ���   
Donde: 


��� 
 1   $ 
 %��� 
 0   $ ( %± 
Por lo que respecta al tensor de tensiones, tendrá la siguiente disposición: 

��� 
 ���� 0 00 ��� ��00 �0� �00� 

Calculamos cada uno de los términos del tensor de tensiones: 

��� 
 2, · 0 � ) · ��� 
 ) · �K�$R � $R�1 � E>�L · ô� · *-�V�»���ç�-M:�q�³ 
��� 
 2, · ��$R Kô� · *-�V�»���ç�-M<�q� � ô� · *-�V�»���ç�-M:�q�L³ � )

· �K�$R � $R�1 � E>�L · ô� · *-�V�»���ç�-M:�q�³ 
�00 
 2, · �$R Kô� · *-�V�»���ç�-M<�q� � �1 � E>� · ô� · *-�V�»���ç�-M:�q�L³ � )

· �K�$R � $R�1 � E>�L · ô� · *-�V�»���ç�-M:�q�³ 
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��0 
 2, · ¸12 �rRç1 � E? � Rç1 � E?s · ô� · *-�V�»���ç�-M<�q� � n2R+1 � E>p · ô�

· *-�V�»���ç�-M:�q��¹ 

�   ��0 
 �0� 
 , ¶rRç1 � E? � Rç1 � E?s · ô� · *-�V�»���ç�-M<�q� � n2R+1 � E>p
· ô� · *-�V�»���ç�-M:�q�· 

Por último, aplicaremos el valor de las amplitudes a las expresiones del campo 

de deformaciones y de tensiones respectivamente con el fin de afrontar el último paso, 

el cual será la obtención de la parte simétrica y antisimétrica de los campos de 

desplazamientos, deformaciones y tensiones respectivamente. 

Así, se tiene que: 

*�þ 
 cos � � $ sin �*-�þ 
 cos � � $ sin � 

Donde: 

Parte simétrica: 

cos � 
 *�þ � *-�þ2  

Parte antisimétrica: 

sin � 
 *�þ � *-�þ2  
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Si se considera que � 
 $RQ, entonces: 

cos $RQ 
 *�V» � *-�V»2  

sin $RQ 
 *-�V» � *�V»2  

Ahora volvemos a rescribir las expresiones del campo de desplazamientos con el 

fin de obtener las componentes simétrica y antisimétrica respectivamente. 

ÝÞß
Þà 
 
 0ð 
 ô� · *-�V�»���ç�-M<�q� � ô� · *-�V�»���ç�-M:�q�

´ 
 r$ · 1ç1 � E?s · ô� · *-�V�»���ç�-M<�q� � n$ · +1 � E>p · ô� · *-�V�»���ç�-M:�q� ± 

Partiendo de las anteriores expresiones del campo de desplazamientos, 

obtendremos lo siguiente: 

ð? 
 Kô� · *�Vç�-M<�q � ô� · *�Vç�-M:�qL · r*�V» � *-�V»2 s 

ðL 
 Kô� · *�Vç�-M<�q � ô� · *�Vç�-M:�qL · r*-�V» � *�V»2 s 

?́ 
 �r$ · 1ç1 � E?s · ô� · *�Vç�-M<�q � n$ · +1 � E>p · ô� · *�Vç�-M:�q�
· r*�V» � *-�V»2 s 

´L 
 �r$ · 1ç1 � E?s · ô� · *�Vç�-M<�q � n$ · +1 � E>p · ô� · *�Vç�-M:�q�
· r*-�V» � *�V»2 s 
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Para obtener las componentes simétrica y antisimétrica de los términos del 

tensor de deformaciones y del tensor de tensiones respectivamente, se aplicarán las 

expresiones del tensor de pequeñas deformaciones así como la ley de comportamiento 

del material sobre las componentes simétrica y antisimétrica del campo de 

desplazamientos que se acaban de obtener. 

 

4.6 Coordenadas generales 

Hasta ahora hemos obtenido las ecuaciones para ondas tipo P, tipo S y Rayleigh 

considerando que la dirección de propagación de las ondas está siempre contenida en un 

plano vertical. Vamos ahora a considerar el caso en el que las ondas puedan propagarse 

en cualquier dirección del espacio. Para ello, introduciremos un nuevo ángulo �áªå
�ì ��, tal que: 

 

Figura 4.4. Gráfico aclaratorio 

La inclusión de este nuevo ángulo de incidencia, nos lleva a introducir una 

matriz de giro Y, la cual se compone de las proyecciones de �O�P�Q� y QO�P�Q� sobre los 

nuevos ejes de referencia ��$�� y Q�$��. De este modo, se tiene que: 

QO 
o R õ 

Presa 

Q�$�� 

QO�P�Q� 

�� 

��$�� 
�O�P�Q� 

$0 R P0Q  

o R õ 

�� 
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Y 
 Ã$�$�$0Ä 
 Ã cos �� sin �� 0� sin �� cos �� 00 0 1Ä · ÃP�QP�QP0QÄ 
Así, tomaremos como ejemplo de aplicación las expresiones deducidas para la 

onda SH y obtener las nuevas expresiones del campo de desplazamiento, deformación y 

tensión respectivamente. Partiendo de dichas expresiones conocidas y considerando 

también que: 

ô?õ� 
 1 

ô?õ� 
 1 

Vamos a tratar de obtener el nuevo campo de desplazamientos para este tipo de 

ondas (SH); para ello, recordaremos las expresiones deducidas anteriormente, 

teniéndose que: 


O 
 �
O�, 0,0� 
 MT��� · *-��<�>O�û�·�̃� � MT��� · *-��<�>O�Æ�·�̃� 

MT��� 
 ä100æ MT��� 
 ä100æ 

!O��� 
 ä 0cos ��sin �� æ !O��� 
 ä 0cos ��� sin ��æ 
Aplicamos ahora la matriz de giro al campo de desplazamientos: 

Y · 
O 
 Y · MT��� · *-��<�>O�û�·�̃� � Y · MT��� · *-��<�>O�Æ�·�̃� 
Haremos un paréntesis en la deducción del nuevo campo de desplazamientos a 

modo de aclarar el producto escalar �!O��� · #̃�, de modo que: 

!O��� · #̃ 
 U!���� !���� !0���V · Ã�OQOõÄ 
 W!O����
!O����
!O0���X

f
· Ã�OQOõÄ 
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Y      �Y-� · !����f · Y-� · # 
 �!����f · �Y-��f · Y-� · # 

Y      Y-� 
 Yf  =ìª �ì =
"� �Y-��f 
 Y 

Y      �!����f · # 
 !��� · # 

Por tanto, volviendo a la expresión del campo de desplazamientos: 

Y · 
O 
 Y · MT��� · *-��<�>O�û�·�̃� � Y · MT��� · *-��<�>O�Æ�·�̃� 
2 
 �2�,�,�� 
 I��� · �-!�G�«���·%� � I��� · �-!�G�«���·%� 

Siendo: 

M��� 
 Y · MT��� 
 Ã cos �� sin �� 0� sin �� cos �� 00 0 1Ä · Ã100Ä 
 ¶ cos ��� sin ��0 · 

M��� 
 Y · MT��� 
 Ã cos �� sin �� 0� sin �� cos �� 00 0 1Ä · Ã100Ä 
 ¶ cos ��� sin ��0 · 

!��� 
 Y · !O��� 
 Ã cos �� sin �� 0� sin �� cos �� 00 0 1Ä · Ã 0cos ��sin �� Ä 
 Ãsin �� · cos ��cos �� · cos ��sin �� Ä 

!��� 
 Y · !O��� 
 Ã cos �� sin �� 0� sin �� cos �� 00 0 1Ä · Ã 0cos ��� sin ��Ä 
 Ãsin �� · cos ��cos �� · cos ��� sin �� Ä 
Por tanto, y recordando que �� 
 ��, se obtiene el nuevo campo de 

desplazamientos en función de las coordenadas generales: 


� 
 
 
 cos �� · *-��<�w��Zû üýw þûº�üýwZû üýw þû»�w�� þûq�
� cos �� · *-��<�w��Zû üýw þÆº�üýwZû üýw þÆ»-w�� þÆq� 


� 
 ð 
 0 


0 
 ´ 
 0 
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Trataremos ahora de obtener la componente simétrica y antisimétrica del campo 

de desplazamientos. Para ello, partiremos de la expresión: 


�
�, 
�, 
0� 
 M��� · *-���û��>�û�·�� � M��� · *-���Æ��>�Æ�·�� � M��� · *-���;��>�;�·�� 
Un dato a tener en cuenta será el de considerar el plano de simetría; para nuestro 

caso, dicho plano será !�"ªì �o ���, �0�. 

 Considerando la simetría del problema, se parte de: 

*-������>���·�� 
 *-�����K>Æ���·º�>Ê���·qL · *-�����K>;���·»L 

*-�����K>;���·»L
ÝÞß
Þà*»?�$� 
 *-�����>;���·» � *�����>;���·»2

*»L�$� 
 *-�����>;���·» � *�����>;���»2
± 

*ºq�$� 
 *-�����K>Æ���·º�>Ê���·qL 
Siendo: 

÷ *»?�$� [ =ì�!ìª*ª5* J$�é5#$="*»L�$� [ =ì�!ìª*ª5* "ª5$J$�é5#$="±  
Dependiendo de la componente del desplazamiento en la que estemos trabajando �
, ð, ´�, se deberá emplear uno u otro término para la deducción de la componente 

simétrica o antisimétrica respectivamente. 


�? 
 M���� · *ºq�$� · *»?�$� � M���� · ô?�� · *ºq�$� · *»?�$� � M���� · ô>� · *ºq�$� · *»?�$� 

�L 
 M���� · *ºq�$� · *»L�$� � M���� · ô?�� · *ºq�$� · *»L�$� � M���� · ô>� · *ºq�$� · *»L�$� 
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Especificando las expresiones para el caso de la onda SH, tenemos que: 


�? 
 cos �� · *-��<�w��Zû üýw þûº�w�� þûq� · ¶*-��<�üýwZû üýw þû»� � *��<�üýwZû üýw þû»�2 ·
� cos �� · *-��<�w��Zû üýw þÆº-w�� þÆq�
· ¶*-��<�üýwZû üýw þÆ»� � *��<�üýwZû üýw þÆ»�2 · 


�L 
 cos �� · *-��<�w��Zû üýw þûº�w�� þûq� · ¶*-��<�üýwZû üýw þû»� � *��<�üýwZû üýw þû»�2 ·
� cos �� · *-��<�w��Zû üýw þÆº-w�� þÆq�
· ¶*-��<�üýwZû üýw þÆ»� � *��<�üýwZû üýw þÆ»�2 · 

Por lo que respecta al cálculo de las tensiones, partiremos también de las 

expresiones deducidas anteriormente, teniéndose en cuenta que: 

��� 
 2, · ��� � ) · ��� · ��� 

Siendo: 

��� 
 ��� � ��� � �00 

��� 
 12 �
�,� � 
�,�� 

El primer paso que llevaremos a cabo será el de calcular el nuevo campo de 

deformaciones, el cual tendrá el siguiente tensor de deformaciones: 

� 
 ���� ��� ��0��� 0 0�0� 0 0 � 
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A continuación, trataremos de obtener cada uno de los términos del tensor, 

especificando su componente simétrica y antisimétrica respectivamente: 

��� 
 �
��� 
 cos �� · *-��<�w��Zû üýw þûº�üýwZû üýw þû»�w�� þûq� · ��$/?� · �sin �� cos ���
� cos �� · *-��<�w��Zû üýw þÆº�üýwZû üýw þÆ»-w�� þÆq�
· ��$/?��sin �� cos ��� 

���? 
 �
�?�� 
 2 

���L 
 �
�L�� 
 cos �� · ��$/?��sin �� cos ��� · *-��<�w��Zû üýw þûº�w�� þûq�

· ¶*-��<�üýwZû üýw þû»� � *��<�üýwZû üýw þû»�2 · � cos ��
· ��$/?��sin �� cos ��� · *-��<�w��Zû üýw þÆº-w�� þÆq�
· ¶*-��<�üýwZû üýw þÆ»� � *��<�üýwZû üýw þÆ»�2 · 

��� 
 12 �
�,� � 
�,��

 12 ¬cos �� · *-��<�w��Zû üýw þûº�üýwZû üýw þû»�w�� þûq�
· ��$/?��cos �� cos ��� � cos ��· *-��<�w��Zû üýw þÆº�üýwZû üýw þÆ»-w�� þÆq� · ��$/?��cos �� cos ���[ 
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���? 
 12 �
�?�Q 
 12 ¸cos �� · *-��<�w��Zû üýw þûº�w�� þûq� · ��$/?��cos �� cos ���
· ¶*-��<�üýwZû üýw þû»� � *��<�üýwZû üýw þû»�2 · � cos ��
· *-��<�w��Zû üýw þÆº-w�� þÆq� · ��$/?��cos �� cos ���
· ¶*-��<�üýwZû üýw þÆ»� � *��<�üýwZû üýw þÆ»�2 ·Ä 

���L 
 12 �
�L�Q 
 12 ¸cos �� · *-��<�w��Zû üýw þûº�w�� þûq� · ��$/?��cos �� cos ���
· ¶*-��<�üýwZû üýw þû»� � *��<�üýwZû üýw þû»�2 · � cos ��
· *-��<�w��Zû üýw þÆº-w�� þÆq� · ��$/?� · �cos �� cos ���
· ¶*-��<�üýwZû üýw þÆ»� � *��<�üýwZû üýw þÆ»�2 ·Ä 

��0 
 12 �
�,0 � 
0,��

 12 ¬cos �� · *-��<�w��Zû üýw þûº�üýwZû üýw þû»�w�� þûq� · ��$/?��sin ���
� cos �� · *-��<�w��Zû üýw þÆº�üýwZû üýw þÆ»-w�� þÆq� · ��$/?��� sin ���[ 
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��0? 
 12 �
�?�o 
 12 ¸cos �� · ��$/?��sin ��� · *-��<�w��Zû üýw þûº�w�� þûq�

· ¶*-��<�üýwZû üýw þû»� � *��<�üýwZû üýw þû»�2 · � cos ��
· *-��<�w��Zû üýw þÆº-w�� þÆq� · ��$/?��� sin ���
· ¶*-��<�üýwZû üýw þÆ»� � *��<�üýwZû üýw þÆ»�2 ·Ä 

��0L 
 12 �
�L�o 
 12 ¸cos �� · ��$/?��sin ��� · *-��<�w��Zû üýw þûº�w�� þûq�

· ¶*-��<�üýwZû üýw þû»� � *��<�üýwZû üýw þû»�2 · � cos �� · ��$/?��� sin ���
· *-��<�w��Zû üýw þÆº-w�� þÆq� · ¶*-��<�üýwZû üýw þÆ»� � *��<�üýwZû üýw þÆ»�2 ·Ä 

��� 
 �00 
 ��0 
 �0� 
 0 

��� 
 ��� � ��� � �00
 cos �� · *-��<�w��Zû üýw þûº�üýwZû üýw þû»�w�� þûq�
· ��$/?��sin �� cos ��� � cos ��· *-��<�w��Zû üýw þÆº�üýwZû üýw þÆ»-w�� þÆq� · ��$/?��sin �� cos ��� 
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Ahora trataremos de introducir las expresiones que hacen referencia a los 

términos del nuevo tensor de tensiones, el cual presenta la siguiente disposición: 

� 
 ���� ��� ��0��� 0 0�0� 0 0 � 

��� 
 ) · ��� � 2, · ��� 

��� 
 �) � 2,� Kcos �� · *-��<�w��Zû üýw þûº�üýwZû üýw þû»�w�� þûq� · ��$/?�
· �sin �� cos ��� � cos �� · *-��<�w��Zû üýw þÆº�üýwZû üýw þÆ»-w�� þÆq�
· ��$/?��sin �� cos ���L 

���? 
 K�)� · cos �� · *-��<�w��Zû üýw þûº�üýwZû üýw þû»�w�� þûq� · ��$/?� · �sin �� cos ���
� �)� · cos �� · *-��<�w��Zû üýw þÆº�üýwZû üýw þÆ»-w�� þÆq�
· ��$/?��sin �� cos ���L
� 2, rcos �� · ��$/?��sin �� cos ��� · *-��<�w��Zû üýw þûº�w�� þûq�

· ¶*-��<�üýwZû üýw þû»� � *��<�üýwZû üýw þû»�2 · � cos ��
· ��$/?��sin �� cos ��� · *-��<�w��Zû üýw þÆº-w�� þÆq�
· ¶*-��<�üýwZû üýw þÆ»� � *��<�üýwZû üýw þÆ»�2 ·s 
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���L 
 K�)� · cos �� · *-��<�w��Zû üýw þûº�üýwZû üýw þû»�w�� þûq� · ��$/?� · �sin �� cos ���
� �)� · cos �� · *-��<�w��Zû üýw þÆº�üýwZû üýw þÆ»-w�� þÆq�
· ��$/?��sin �� cos ���L
� 2, rcos �� · ��$/?��sin �� cos ��� · *-��<�w��Zû üýw þûº�w�� þûq�

· ¶*-��<�üýwZû üýw þû»� � *��<�üýwZû üýw þû»�2 · � cos ��
· ��$/?��sin �� cos ��� · *-��<�w��Zû üýw þÆº-w�� þÆq�
· ¶*-��<�üýwZû üýw þÆ»� � *��<�üýwZû üýw þÆ»�2 ·s 

���? 
 ���? 
 K�)� · cos �� · *-��<�w��Zû üýw þûº�üýwZû üýw þû»�w�� þûq� · ��$/?�
· �sin �� cos ��� � �)� · cos �� · *-��<�w��Zû üýw þÆº�üýwZû üýw þÆ»-w�� þÆq�
· ��$/?��sin �� cos ���L
� , ¸cos �� · *-��<�w��Zû üýw þûº�w�� þûq� · ��$/?��cos �� cos ���
· ¶*-��<�üýwZû üýw þû»� � *��<�üýwZû üýw þû»�2 · � cos ��
· *-��<�w��Zû üýw þÆº-w�� þÆq� · ��$/?��cos �� cos ���
· ¶*-��<�üýwZû üýw þÆ»� � *��<�üýwZû üýw þÆ»�2 ·Ä 
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���L 
 ���L 
 K�)� · cos �� · *-��<�w��Zû üýw þûº�üýwZû üýw þû»�w�� þûq� · ��$/?�
· �sin �� cos ��� � �)� · cos �� · *-��<�w��Zû üýw þÆº�üýwZû üýw þÆ»-w�� þÆq�
· ��$/?��sin �� cos ���L
� , ¸cos �� · *-��<�w��Zû üýw þûº�w�� þûq� · ��$/?��cos �� cos ���
· ¶*-��<�üýwZû üýw þû»� � *��<�üýwZû üýw þû»�2 · � cos ��
· *-��<�w��Zû üýw þÆº-w�� þÆq� · ��$/?� · �cos �� cos ���
· ¶*-��<�üýwZû üýw þÆ»� � *��<�üýwZû üýw þÆ»�2 ·Ä 

��0? 
 �0�? 
 K�)� · cos �� · *-��<�w��Zû üýw þûº�üýwZû üýw þû»�w�� þûq� · ��$/?�
· �sin �� cos ��� � �)� · cos �� · *-��<�w��Zû üýw þÆº�üýwZû üýw þÆ»-w�� þÆq�
· ��$/?��sin �� cos ���L
� , ¸cos �� · ��$/?��sin ��� · *-��<�w��Zû üýw þûº�w�� þûq�

· ¶*-��<�üýwZû üýw þû»� � *��<�üýwZû üýw þû»�2 · � cos ��
· *-��<�w��Zû üýw þÆº-w�� þÆq� · ��$/?��� sin ���
· ¶*-��<�üýwZû üýw þÆ»� � *��<�üýwZû üýw þÆ»�2 ·Ä 
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��0L 
 �0�L 
 K�)� · cos �� · *-��<�w��Zû üýw þûº�üýwZû üýw þû»�w�� þûq� · ��$/?�
· �sin �� cos ��� � �)� · cos �� · *-��<�w��Zû üýw þÆº�üýwZû üýw þÆ»-w�� þÆq�
· ��$/?��sin �� cos ���L
� , ¸cos �� · ��$/?��sin ��� · *-��<�w��Zû üýw þûº�w�� þûq�

· ¶*-��<�üýwZû üýw þû»� � *��<�üýwZû üýw þû»�2 · � cos �� · ��$/?��� sin ���
· *-��<�w��Zû üýw þÆº-w�� þÆq� · ¶*-��<�üýwZû üýw þÆ»� � *��<�üýwZû üýw þÆ»�2 ·Ä 

4.6.1 Expresiones generales 

De un modo más general, introduciremos las expresiones necesarias para llevar a 

cabo el cálculo del campo de desplazamientos, deformaciones y tensiones para 

cualquier onda que pudiera propagarse en cualquier dirección del espacio �òª=�
J$óª M*� ª
*ðì áªå
�ì ��. 

No obstante, primeramente debemos de hacer hincapié en las expresiones 

referidas a los vectores dirección y propagación; tanto uno como el otro, deberán estar 

expresados en función de las nuevas coordenadas generales, lo que implica que: 

M��� 
 Y · MT� 
!��� 
 Y · !O� 

Siendo: 

!O� y MT� las expresiones del vector propagación y del vector dirección para una 

onda contenida en un plano perpendicular al plano de simetría ��o�. 
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4.6.1.1 Campo de Desplazamientos 

A modo de aclaración, primeramente serán deducidas las expresiones del campo 

de desplazamiento, tanto para el caso simétrico como para el caso antisimétrico para, 

posteriormente, proceder al cálculo del tensor de deformaciones y del tensor de 

tensiones respectivamente.  

4.6.1.1.1 Caso simétrico 


�? 
 ] ôô�$�_
�¤� · M���� · *ºq�$� · *»?�$� 


�? 
 ] ôô�$�_
�¤� · M���� · *ºq�$� · *»L�$� 


0? 
 ] ôô�$�_
�¤� · M0��� · *ºq�$� · *»?�$� 

Siendo: 

• ª: el número de ondas que intervienen en el análisis (incidentes y 

reflejadas). 

• ôô�$�: amplitud de las ondas que intervienen en el análisis, donde: 

ïí 
ôô�1� 
 ïí $ª=$M*ª5*ôô�2� 
 ïí #*î�*%"M"± ïð Ëôô�1� 
 ïð $ª=$M*ª5*ôô�2� 
 ïð #*î�*%"M"ôô�3� 
 ñ #*î�*%"M" ±
ñ Ë ôô�1� 
 ñ $ª=$M*ª5*ôô�2� 
 ñ #*î�*%"M"ôô�3� 
 ïð #*î�*%"M"± Y" 
ôô�1� 
 Y" $ª=$M*ª5*ôô�2� 
 Y" #*î�*%"M"± 

• M���: vector dirección de propagación, cuyos términos se encuentran 

expresados en función de las coordenadas generales. Así, tenemos que: 

*ºq�$� 

*ºq�$� 
 *-�����K>Æ���·ºÆ�>Ê���·ºÊL 
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*»?�$� 

*»?�$� 
 *-��¡·>;���·º; � *��¡·>;���·º;2  

*»L�$� 

*»L�$� 
 *-��¡·>;���·º; � *��¡·>;���·º;2  

4.6.1.1.2 Caso antisimétrico 


�L 
 ] ôô�$�_
�¤� · M���� · *ºq�$� · *»L�$� 


�L 
 ] ôô�$�_
�¤� · M���� · *ºq�$� · *»?�$� 


0L 
 ] ôô�$�_
�¤� · M0��� · *ºq�$� · *»L�$� 

Donde el significado de cada término quedó especificado con anterioridad. 

4.6.1.2 Campo de Deformaciones 

4.6.1.2.1 Caso simétrico 

El primer paso será obtener cada una de las derivadas del campo de 

desplazamiento, para después poder obtener las componentes del tensor de 

deformaciones de manera inmediata. De modo que: 

M
�$, %� 
 �
����  

M
?�1,1� 
 ] M���� · !���� · ��$/���� · *ºq�$� · *»?�$� 
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M
?�1,2� 
 ] M���� · !���� · ��$/���� · *ºq�$� · *»L�$� 

M
?�1,3� 
 ] M���� · !0��� · ��$/���� · *ºq�$� · *»?�$� 

M
?�2,1� 
 ] M���� · !���� · ��$/���� · *ºq�$� · *»L�$� 

M
?�2,2� 
 ] M���� · !���� · ��$/���� · *ºq�$� · *»?�$� 

M
?�2,3� 
 ] M���� · !0��� · ��$/���� · *ºq�$� · *»L�$� 
M
?�3,1� 
 ] M0��� · !���� · ��$/���� · *ºq�$� · *»?�$� 

M
?�3,2� 
 ] M0��� · !���� · ��$/���� · *ºq�$� · *»L�$� 

M
?�3,3� 
 ] M0��� · !0��� · ��$/���� · *ºq�$� · *»?�$� 

Donde *ºq�$�, *»?�$� y *»L�$� tendrán la mismas expresiones que las deducidas 

anteriormente. 

4.6.1.2.2 Caso antisimétrico 

M
L�1,1� 
 ] M���� · !���� · ��$/���� · *ºq�$� · *»L�$� 

M
L�1,2� 
 ] M���� · !���� · ��$/���� · *ºq�$� · *»?�$� 

M
L�1,3� 
 ] M���� · !0��� · ��$/���� · *ºq�$� · *»L�$� 

M
L�2,1� 
 ] M���� · !���� · ��$/���� · *ºq�$� · *»?�$� 

M
L�2,2� 
 ] M���� · !���� · ��$/���� · *ºq�$� · *»L�$� 
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M
L�2,3� 
 ] M���� · !0��� · ��$/���� · *ºq�$� · *»?�$� 

M
L�3,1� 
 ] M0��� · !���� · ��$/���� · *ºq�$� · *»L�$� 

M
L �3,2� 
 ] M0��� · !���� · ��$/���� · *ºq�$� · *»?�$� 

M
L�3,3� 
 ] M0��� · !0��� · ��$/���� · *ºq�$� · *»L�$� 

 Finalmente, introduciremos las expresiones generales que hacen mención a los 

términos del tensor de deformaciones, de modo que para cada tipo de onda quedarán 

particularizados cada uno de esos términos. Así, tenemos que: 

4.6.1.2.3 Caso simétrico 

���? 
 �
�?�� 
 M
?�1,1� 

���? 
 ���? 
 12 r�
�?�Q � �
�?�� s 
 12 �M
?�1,2� � M
?�2,1�� 

���? 
 �
�?�Q 
 M
?�2,2� 
��0? 
 �0�? 
 12 r�
�?�o � �
0?�� s 
 12 �M
?�1,3� � M
?�3,1�� 

�00? 
 �
0?�o 
 M
?�3,3� 

4.6.1.2.4 Caso antisimétrico 

Las expresiones para el caso antisimétrico serán análogas que para el caso 

simétrico con la única salvedad de que M
�,�? 
 M
�,�L . 
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4.6.1.3 Campo de Tensiones 

En lo referido a la obtención del Campo de Tensiones, recurriremos a las 

siguientes expresiones: 

4.6.1.3.1 Caso simétrico 

�ºº? 
 2, · �ºº? � ) · ��� 

�»»? 
 2, · �»»? � ) · ��� 

�qq? 
 2, · �qq? � ) · ��� 

�º»? 
 �»º? 
 2, · �º»? 
 2, · �»º?  

�ºq? 
 �qº? 
 2, · �ºq? 
 2, · �qº?  

�»q? 
 �q»? 
 2, · �»q? 
 2, · �q»?  

4.6.1.3.2 Caso antisimétrico 

�ººL 
 2, · �ººL � ) · ��� 

�»»L 
 2, · �»»L � ) · ��� 

�qqL 
 2, · �qqL � ) · ��� 

�º»L 
 �»ºL 
 2, · �º»L 
 2, · �»ºL  

�ºqL 
 �qºL 
 2, · �ºqL 
 2, · �qºL  

�»qL 
 �q»L 
 2, · �»qL 
 2, · �q»L  

Una vez obtenidas las expresiones generales que hacen referencia a la 

propagación de las ondas desde un ángulo de incidencia general (situado fuera de un 

plano perpendicular al plano de simetría de la estructura), trataremos en el siguiente 

capítulo de analizar algunos de los factores que se consideran claves en la respuesta 

sísmica de una estructura. 
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5 Resultados 

 

5.1 Introducción. 

A lo largo del presente capítulo, abordaremos la resolución de los problemas que 

se hayan planteado en este proyecto.  

En primera instancia, realizaremos el análisis de una estructura cilíndrica 

semienterrada en el semiespacio con el fin de comprobar que la inclusión del nuevo 

ángulo de incidencia ��� en las ecuaciones de propagación de las ondas ha sido 

correcta.  

En segundo lugar, afrontaremos el análisis de una estructura de contención de 

aguas; más concretamente, la presa de Morrow Point (Colorado, U.S.A). Se trata de una 

presa clásica en análisis dinámicos, los cuales han sido realizados por destacados 

investigadores de nivel internacional. 

Se trata éste de un capítulo de gran importancia dentro del conglomerado que 

supone la realización de este proyecto, puesto que en él se abordará el análisis de los 

diversos factores que conforman el fenómeno de la excitación sísmica y que influyen en 

la respuesta de una estructura.  

Para la realización de los cálculos, así como para el tratamiento posterior de los 

resultados, se ha optado por recurrir a la utilización de varios programas informáticos. 

El correcto uso de éstos y la interpretación posterior de los resultados obtenidos 

dependen, en gran medida, del conocimiento preciso de los problemas estudiados y de 

los fundamentos teóricos, así como de los procedimientos llevados a cabo por dichos 

programas informáticos.  

Como apartado final, se realizará una revisión y análisis de los resultados 

obtenidos con el fin de elaborar unas conclusiones que puedan servir como base para 

futuras líneas de investigación en trabajos que pudieran realizarse en este campo de 

estudio. 
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5.2 Estructura cilíndrica semienterrada en el semiespacio. 

Como hemos aclarado en el inicio de este capítulo, el primer problema sometido 

a estudio será el de una estructura cilíndrica semienterrada en el semiespacio. El 

problema queda esquematizado según la figura 5.1, en la cual hemos representado la 

mitad del problema, que presenta simetría respecto al !�"ªì �o. 

 

Figura 5.1. Estructura cilíndrica semienterrada en el semiespacio. 

Por lo que respecta a las dimensiones de la estructura, ésta tendrá una altura de 

200 m y un diámetro de 50 m. En lo que a los medios que intervienen en el análisis, 

diferenciamos dos clases: el suelo y la estructura. Las propiedades de cada uno de estos 

medios se indican en la tabla 5.1. 

 

 

 

 

o 

� Q 
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Suelo Módulo de rigidez transversal: §? 
 5 · 10Õ _/��� 

Módulo de Poisson: �? 
 0.3 

Coeficiente de amortiguamiento: \? 
 0.05 

Densidad: �? 
 2000 /å/�0 

Estructura cilíndrica Módulo de rigidez transversal: §� 
 1 · 10�� _/��� 

Módulo de Poisson: �� 
 0.2 

Coeficiente de amortiguamiento: \� 
 0.05 

Densidad: �� 
 2500 /å/�0 

Tabla 5.1. Propiedades de los medios que intervienen en el problema. 

5.2.1 Discretización utilizada. 

A lo largo de este apartado se detallará el proceso encargado de definir el 

modelo de elementos de contorno con el que se analizará el problema en cuestión. La 

elección del modelo conlleva muchos aspectos relacionados con el problema sobre los 

que se debe decidir. Uno de estos aspectos radica en elegir la discretización adecuada 

con el fin de aproximar la geometría del problema y las variables dinámicas del mismo.  

Como sucede en la mayoría de problemas analizados a través del MEC, 

encontrar la discretización adecuada supone el mayor de los retos que se plantean. El 

objetivo será el de encontrar una discretización con un número de nodos razonable y a 

través de la que se obtengan resultados lo suficientemente precisos. Cabe recordar que 

cuanto mayor sea el número de nodos, mayor será el número de grados de libertad del 

problema y mayor será el tiempo de computación necesario para obtener los resultados, 

pudiendo incluso resultar insuficiente la capacidad de cálculo de las máquinas 

disponibles. De ahí a que sea muy tenida en cuenta la importancia de la elección de la 

discretización. 

Por otro lado, cabe recordar que tanto la geometría del problema como las 

variables primarias y sus derivadas se aproximarán mediante las funciones de 

aproximación explicadas en capítulos anteriores. 
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Acerca de la discretización realizada sobre el modelo, ésta ha sido obtenida a 

través del software informático GID, un pre y postprocesador desarrollado por el 

CIMNE (International Center for Numerical Methods in Engeneering), con sede en 

Barcelona y que nos permite importar las discretizaciones realizadas y verlas de forma 

gráfica como se observa en la figura 5.2. 

 

Figura 5.2. Discretización aplicada en la estructura cilíndrica semienterrada. 

En lo referido a los elementos utilizados para llevar a cabo la discretización, se 

emplearon elementos cuadráticos cuadriláteros y elementos cuadráticos triangulares de 

9 y 6 nodos respectivamente.  

A modo de recordatorio, la simetría de la geometría del problema provoca que 

sólo sea necesaria la discretización de la mitad del mismo (figura 5.2.). En efecto, la 

reducción de la discretización a la mitad nos conduce a que el número de grados de 

libertad del problema también se vea reducido a la mitad, provocando que el sistema de 

ecuaciones resultante de la aplicación del MEC también reduzca su tamaño a la mitad, 

reduciendo los tiempos de computación y agilizando la obtención de resultados. Para 

explicar las razones de la simplificación que provoca la simetría del problema, se tiene 

la figura 5.3. 
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Figura 5.3. Simetría del problema y de la excitación. Relación entre las componentes del desplazamiento 

de dos puntos emplazados simétricamente. 

Los puntos 1 y 2 se encuentran simétricamente situados. En caso de considerar 

la discretización del problema entero y tras plantear el sistema de ecuaciones, 

aparecerán las incógnitas correspondientes a los nodos 1 y 2, en este caso las 3 

componentes del vector desplazamiento �
º, 
», 
q�. No obstante, recurriendo a la 

simetría del problema, las componentes del vector desplazamiento de ambos puntos 

guardan la siguiente relación: 

ä 
º� 
 
º�
»� 
 �
»�
q� 
 
q�
± 

Por lo que sustituyendo las variables de cada punto de una de las partes 

simétricas del problema por las de su simétrico, con el signo correspondiente, el sistema 

se ve reducido a la mitad, con el importante ahorro computacional que ello supone. 

 

 

ëªM" $ª=$M*ª5* 
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5.3 Planteamiento del primer problema. 

Como ya se dijo anteriormente, el primer problema servirá como prueba a modo 

de comprobación de que la inclusión del nuevo ángulo de incidencia ��� en las 

ecuaciones de propagación de las ondas ha sido correcta.  

Para ello partiremos de un problema inicial, denominado problema de referencia. 

Dicho problema será distinto para cada tipo de onda. Así, y de un modo más concreto, 

en estos problemas sólo se tendrá en cuenta la incidencia de las ondas contenidas en un 

plano perpendicular al plano de simetría de la estructura. Dentro de este plano donde se 

encuentra contenida la onda, ésta puede variar su ángulo de incidencia ��� sobre la 

estructura. Se trata del planteamiento que se había considerado hasta ahora sin tener en 

cuenta el nuevo ángulo de incidencia ��� introducido en el capítulo anterior. Con la 

inclusión de este problema en nuestro proyecto, tratamos de certificar que la inclusión 

del ángulo de incidencia ��� en la formulación matemática referida a la propagación de 

las ondas ha sido correcta. Se trata, por tanto, de una comprobación desde el punto de 

vista matemático, obviando las propiedades del medio u otros factores que influyeran en 

la respuesta. Para aclarar un poco todo esto, vamos a especificar el gráfico en el que 

quede detallado el problema de referencia específico para cada tipo de onda.  

En lo referido al punto objeto del análisis y sobre el cual describiremos cada uno 

de los problemas de referencia, especificaremos, a través de un gráfico, el lugar donde 

se ubica dicho nodo. Así, se tiene que:  

 

Figura 5.4. Nodo 421. Nodo sobre el que quedarán referenciados cada uno de los problemas de referencia. 

ªìMì 421 
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Onda SH 

 

Figura 5.5. Problema de referencia para onda SH. 

La figura 5.5 describe, desde una vista superior, el desplazamiento provocado 

por la onda SH en el nodo 421.  

Onda P 

 

Figura 5.6. Problema de referencia para onda P. 

Onda SH 

Estructura 

Q 

� 

2 

Estructura 

o 

Q 

Onda P 

� 
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La figura 5.6 nos muestra una vista lateral del modelo, en donde puede verse el 

desplazamiento que provoca la incidencia de la onda P sobre el nodo 421. La incidencia 

de la onda P sobre la estructura provoca la aparición de dos componentes del vector 

desplazamiento, la componente ð y la componente ́. 

Onda SV 

 

Figura 5.7. Problema de referencia para onda SV. 

Finalmente, podemos observar a través de la figura 5.7 (vista lateral del modelo) 

el desplazamiento que provoca la incidencia de la onda SV sobre el nodo 421. Al igual 

que sucediera para la onda P, la incidencia de la onda SV sobre el modelo provoca la 

aparición de dos de las componentes del vector desplazamiento, la componente ð y la 

componente ́ . 

Una vez descrito el problema de referencia para cada una de las ondas, así como 

el desplazamiento producido por cada una de ellas sobre el nodo de la estructura 

sometida a análisis, el siguiente paso será el de comparar cada uno de los problemas de 

referencia con aquellos en los que hayamos incluido el nuevo ángulo de incidencia ���. 

El valor de la variable que se está representando (desplazamientos) será 

adimensional; es decir, esta variable representará el movimiento provocado por la 

Onda SV 

Q 

o 

Estructura 

� 
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excitación sísmica sobre el nodo sometido a análisis (desplazamiento) en relación con el 

movimiento provocado por esa misma excitación sobre un punto situado lo 

suficientemente alejado de la estructura (campo libre).  

Por lo que se refiere al valor de esta variable, para cada valor de la frecuencia 

ésta vendrá dada por un número complejo. Para una frecuencia determinada, la 

excitación provocará un movimiento armónico de amplitud unitaria en campo libre (en 

ausencia de la estructura) y la respuesta en el punto sometido al análisis será otra 

función armónica de la misma frecuencia pero de distinta amplitud y desfasada con la 

excitación. El modulo del número complejo representará la amplitud de la respuesta en 

relación con la amplitud del movimiento en campo libre.  

5.3.1 Onda SH 

Problema de referencia ï¥�� (� 
 30°) 
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Problema ï¥�� (� 
 30°; � 
 30°) 

 

 

Problema ï¥�� (� 
 60°; � 
 30°)  

 

 

 

 

 

 

 

 

ªìMì 580 

 

ªìMì 645 
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Problema ï¥0� (� 
 90°; � 
 30°) 

 

A modo de contrastar a través de datos numéricos lo mostrado a través de las 

gráficas, introduciremos el valor del desplazamiento para un valor concreto del rango de 

frecuencias estudiado. Así, se tiene la siguiente tabla: 

 

Frecuencia: 5 rad/s c �&%'I G� $ �&%'I G� Parte 
real 

Parte 
imaginaria 

Módulo 

bd�� (nodo 421) 0 30 4.63E+00 

 

-2.85E+00 5.437532 

 

bd�� (nodo 580) 30 30 4.63E+00 

 

-2.85E+00 

 

5.437544 

 

bd�� (nodo 645) 60 30 4.63E+00 

 

-2.85E+00 

 

5.437581 

 

bd�� (nodo 659) 90 30 4.63E+00 

 

-2.85E+00 

 

5.437587 

 

 

 

 

 

ªìMì 659 
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Problema de referencia ï¥�� (� 
 60°) 

 

 

Problema ï¥�� (� 
 30°; � 
 60°) 

 

 

 

 

 

 

 

 

ªìMì 421 

 

ªìMì 580 
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Problema ï¥�� (� 
 60°; � 
 60°) 

 

 

Problema ï¥0� (� 
 90°; � 
 60°) 

 

 

 

 

 

 

 

ªìMì 645 

 

ªìMì 659 
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Al igual que en el caso anterior, realizaremos una tabla con el fin de contrastar 

los resultados: 

Frecuencia: 5 rad/s c �&%'I G� $ �&%'I G� Parte 
real 

Parte 
imaginaria 

Módulo 

bd�� (nodo 421) 0 60 5.08E+00 

 

-3.35E+00 

 

6.081831 

 

bd�� (nodo 580) 30 60 5.08E+00 

 

-3.35E+00 

 

6.081843 

 

bd�� (nodo 645) 60 60 5.08E+00 

 

-3.35E+00 

 

6.081881 

 

bd�� (nodo 659) 90 60 5.08E+00 

 

-3.35E+00 

 

6.081901 

 

 

Problema de referencia ï¥0� (� 
 90°) 

 

 

 

 

 

 

ªìMì 421 
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Problema ï¥�0 (� 
 30°; � 
 90°) 

 

 

Problema ï¥�0 (� 
 60°; � 
 90°)  

 

 

 

 

 

 

 

 

ªìMì 580 

 

ªìMì 645 
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Problema ï¥00 (� 
 60°; � 
 90°) 

 

 

Frecuencia: 5 rad/s c �&%'I G� $ �&%'I G� Parte 
real 

Parte imaginaria Módulo 

bd�� (nodo 421) 0 90 5.29E+00 

 

-3.73E+00 

 

6.472109 

 

bd�� (nodo 580) 30 90 5.29E+00 

 

-3.73E+00 

 

6.472120 

 

bd�� (nodo 645) 60 90 5.29E+00 

 

-3.73E+00 

 

6.472157 

 

bd�� (nodo 659) 90 90 5.29E+00 

 

-3.73E+00 

 

6.472187 

 

 

 

 

 

 

 

ªìMì 659 
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5.3.2 Onda P 

Problema de referencia ñ�� (� 
 30°) 

 

 

Problema ñ�� (� 
 30°; � 
 30°) 

 

 

 

 

 

 

ªìMì 421 

 

ªìMì 580 
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Problema ñ�� (� 
 60°; � 
 30°) 

 

 

Problema ñ0� (� 
 90°; � 
 30°) 

 

 

 

 

 

 

 

 

ªìMì 645 

 

ªìMì 659 
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$ 
 30° Componente radial Componente normal 

Frec: 5 
rad/s 

c Parte 
real 

Parte 
imaginaria 

Módulo Parte 
real 

Parte 
imaginaria 

Módulo 

 

"�� (nodo 
421) 

0 4.30E+00 

 

-1.99E+00 

 

4.736 

 

 

2.03E+00 

 

-7.43E-01 

 

2.159 

 

"�� (nodo 
580) 

30 4.30E+00 

 

-1.99E+00 

 

4.736 

 

2.03E+00 

 

-7.43E-01 

 

2.159 

 

"�� (nodo 
645) 

60 4.30E+00 

 

-1.99E+00 

 

4.736 

 

2.03E+00 

 

-7.43E-01 

 

2.159 

 

"�� (nodo 
659) 

90 4.30E+00 

 

-1.99E+00 

 

4.736 

 

2.03E+00 

 

-7.43E-01 

 

2.159 

 

 

Problema de referencia ñ�� (� 
 60°) 

 

 

 

 

 

ªìMì 421 
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Problema ñ�� (� 
 30°; � 
 60°) 

 

 

Problema ñ�� (� 
 60°; � 
 60°) 

 

 

 

 

 

 

 

 

ªìMì 580 

 

ªìMì 645 
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Problema ñ0� (� 
 90°; � 
 60°) 

 

 

$ 
 60° Componente radial Componente normal 

Frec: 5 
rad/s 

c Parte 
real 

Parte 
imaginaria 

Módulo Parte 
real 

Parte 
imaginaria 

Módulo 

 

"�� (nodo 
421) 

0 3.08E+00 

 

-1.19E+00 

 

3.303 

 

2.52E+00 

 

-5.53E-01 

 

2.576 

 

"�� (nodo 
580) 

30 3.08E+00 

 

-1.19E+00 

 

3.303 

 

2.52E+00 

 

-5.53E-01 

 

2.577 

 

"�� (nodo 
645) 

60 3.08E+00 

 

-1.19E+00 

 

3.303 

 

2.52E+00 

 

-5.53E-01 

 

2.577 

 

"�� (nodo 
659) 

90 3.08E+00 

 

-1.19E+00 

 

3.303 

 

2.52E+00 

 

-5.53E-01 

 

2.577 

 

 

 

 

 

 

ªìMì 659 
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Problema de referencia ñ0� (� 
 90°) 

 

 

Problema ñ�0 (� 
 30°; � 
 90°) 

 

 

 

 

 

 

 

 

ªìMì 421 

 

ªìMì 580 
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Problema ñ�0 (� 
 60°; � 
 90°) 

 

 

Problema ñ00 (� 
 90°; � 
 90°) 

 

 

 

 

 

 

 

 

ªìMì 645 

 

ªìMì 659 
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$ 
 90° Componente normal 

Frec: 5 rad/s c Parte real Parte imaginaria Módulo 

 

"�� (nodo 421) 0 2.13E+00 

 

-3.32E-01 

 

2.151 

 

"�� (nodo 580) 30 2.13E+00 

 

-3.32E-01 

 

2.151 

 

"�� (nodo 645) 60 2.13E+00 

 

-3.32E-01 

 

2.151 

 

"�� (nodo 659) 90 2.13E+00 

 

-3.32E-01 

 

2.151 

 

 

5.3.3 Onda SV 

Problema de referencia ïe�� (� 
 30°) 

 

 

 

 

 

ªìMì 421 
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Problema ïe�� (� 
 30°; � 
 30°) 

 

 

Problema ïe�� (� 
 60°; � 
 30°) 

 

 

 

 

 

 

 

 

ªìMì 580 

 

ªìMì 645 
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Problema ïe0� (� 
 90°; � 
 30°� 

 

 

$ 
 30° Componente radial Componente normal 

Frec: 5 
rad/s 

c Parte real Parte 
imaginaria 

Módulo Parte real Parte 
imaginaria 

Módulo 

 

"�� (nodo 
421) 

0 -2.22E+00 

 

-2.15E+00 

 

3.089 

 

-1.73E+00 

 

-2.93E-01 

 

1.758 

 

"�� (nodo 
580) 

30 -2.22E+00 

 

-2.15E+00 

 

3.089 

 

-1.73E+00 

 

-2.93E-01 

 

1.758 

 

"�� (nodo 
645) 

60 -2.22E+00 

 

-2.15E+00 

 

3.089 

 

-1.73E+00 

 

-2.93E-01 

 

1.758 

 

"�� (nodo 
659) 

90 -2.22E+00 

 

-2.15E+00 

 

3.089 

 

-1.73E+00 

 

-2.93E-01 

 

1.758 

 

 

 

 

 

 

ªìMì 659 
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Problema de referencia ïe�� (� 
 60°) 

 

 

Problema ïe�� (� 
 30°; � 
 60°) 

 

 

 

 

 

 

 

 

ªìMì 421 

 

ªìMì 580 
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Problema ïe�� (� 
 60°; � 
 60°) 

 

 

Problema ïe0� (� 
 90°; � 
 60°) 

 

 

 

 

 

 

 

 

ªìMì 645 

 

ªìMì 659 
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$ 
 60° Componente radial Componente normal 

Frec: 5 
rad/s 

c Parte real Parte 
imaginaria 

Módulo Parte real Parte 
imaginaria 

Módulo 

 

"�� (nodo 
421) 

0 4.83E+00 

 

-4.34E+00 

 

6.494 

 

1.37E-01 

 

-1.40E+00 

 

1.403 

 

"�� (nodo 
580) 

30 4.83E+00 

 

-4.34E+00 

 

6.494 

 

1.37E-01 

 

-1.40E+00 

 

1.403 

 

"�� (nodo 
645) 

60 4.83E+00 

 

-4.34E+00 

 

6.4939 

 

1.37E-01 

 

-1.40E+00 

 

1.403 

 

"�� (nodo 
659) 

90 4.83E+00 

 

-4.34E+00 

 

6.4938 

 

1.37E-01 

 

-1.40E+00 

 

1.403 

 

 

Problema de referencia ïe0� (� 
 90°) 

 

 

 

 

 

 

ªìMì 421 
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Problema ïe�0 (� 
 30°; � 
 90°) 

 

 

Problema ïe�0 (� 
 60°; � 
 90°) 

 

 

 

 

 

 

 

 

ªìMì 580 

 

ªìMì 645 
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Problema ïe00 (� 
 90°; � 
 90°) 

 

 

$ 
 90° Componente radial Componente normal 

Frec: 5 
rad/s 

c Parte 
real 

Parte 
imaginaria 

Módulo Parte 
real 

Parte 
imaginaria 

Módulo 

 

"�� (nodo 
421) 

0 5.29E+00 

 

-3.74E+00 

 

6.482 

 

1.21E+00 

 

-1.04E+00 

 

1.594 

 

"�� (nodo 
580) 30 

5.29E+00 

 

-3.74E+00 

 

6.482 

 

1.21E+00 

 

-1.04E+00 

 

1.594 

 

"�� (nodo 
645) 60 

5.29E+00 

 

-3.74E+00 6.482 

 

1.21E+00 

 

-1.04E+00 

 

1.594 

 

"�� (nodo 
659) 90 

5.29E+00 

 

-3.74E+00 

 

6.482 

 

1.21E+00 

 

-1.04E+00 

 

1.594 

 

 

Tras realizar las comparaciones entre los problemas de referencia para cada tipo 

de onda y los problemas donde se hayan considerado  las combinaciones de los distintos 

valores de � y �, podemos llegar a la conclusión de que el nuevo ángulo de incidencia � ha sido introducido con éxito en las expresiones matemáticas que hacen referencia a 

la propagación de las ondas sísmicas.   

 

ªìMì 659 
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Para ello, hemos obtenido el valor del desplazamiento para un valor concreto de 

la frecuencia, que ha sido de 5 #"M/J. Para dicho valor, podemos ver como el valor del 

desplazamiento se mantiene inalterado para las diferentes hipótesis de � y � que se han 

tenido en cuenta. 

  

5.4 Planteamiento del segundo problema. 

A través del estudio de este problema, abordaremos el estudio del 

comportamiento sísmico de presas bóveda. Para ello, afrontaremos el análisis dinámico 

del modelo de una presa real, la de Morrow Point.  

En muchos casos el tamaño de una presa bóveda es del mismo orden de 

magnitud que la longitud de las ondas sísmicas en el terreno de cimentación. Como 

consecuencia, el campo de desplazamientos en los estribos de la presa provocado por un 

sismo no es uniforme. De este modo, puntos diferentes en la cimentación de una gran 

presa bóveda pueden verse sometidos a valores de aceleración distintos (incluso en 

desfase) en el mismo instante de tiempo. La importancia de este efecto depende del 

tamaño de la presa, de la longitud de las ondas sísmicas y de la dirección de 

propagación de las mismas; en cualquier caso, asumir una simplificación de la 

excitación sísmica que suponga un campo uniforme de desplazamientos – aceleraciones 

a lo largo de la interfase presa – terreno, no sólo deja de representar los efectos de 

interacción mutua entre la presa y la base rocosa, sino que también altera la naturaleza 

real de la solicitación y puede llevar a conclusiones erróneas.  
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 La figura muestra el tipo de problema que se pretende resolver. Se trata de una 

presa bóveda que cierra un cañón cuya geometría será en general irregular. El embalse 

estará lleno. Se desea conocer la respuesta dinámica de la presa ante una excitación 

consistente en una armónica plana que incide con ángulo variable desde zonas alejadas. 

Se trata de un problema tridimensional que implica medios de diferente naturaleza 

(presa de hormigón, suelo y agua), para los cuales cabe esperar un comportamiento 

acoplado muy distinto del que presentarían actuando independientemente. Por tanto, 

cualquier modelo que pretenda abordar el problema habrá que tener en cuenta la 

geometría real tridimensional, los efectos de interacción mutua, así como la naturaleza 

espacial de la excitación.  

5.4.1 Presa de Morrow Point. 

La elección de esta presa para la realización del análisis se debe a la gran 

cantidad de análisis previos existentes. Son muchos los autores que han estudiado la 

respuesta sísmica de varios modelos basados en esta presa, por lo que se podrán 

contrastar con mayor facilidad los resultados y completar muchas de estas 

investigaciones. Además, las propiedades y geometría de la presa están completamente 

definidas, así como las discretización correspondiente.  

La presa de Morrow Point está situada en el Parque Nacional del Cañón Negro, 

en el río Gunisson, Colorado (USA). 

Se trata de una presa situada sobre suelo rocoso. La presa consta de 142 m  de 

altura. En la cota de coronación abarca un arco de circunferencia de 112,5° con un radio 

de 113 m. los datos de la presa y el cañón pueden estudiarse con mayor profundidad en 

Hall y Chopra (1983). 

Tanto la presa de hormigón como el suelo rocoso, serán considerados como 

medios viscoelásticos, homogéneos e isótropos. 
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Figura 5.8. Vista aérea de la presa de Morrow Point. 

Por lo que respecta al modelo que vamos a estudiar, se ha optado por el de un 

modelo de canal bajo con embalse cerrado. Este modelo se ajusta más a embalses reales 

en los que el nivel de agua embalsada va disminuyendo a medida que nos alejamos 

aguas arriba de la presa; es decir, estamos hablando del típico embalse de 

almacenamiento de agua para consumo.  

 

 

Figura 5.9. Discretización para el modelo de canal bajo con embalse cerrado. 

 



 

 

 

171 Resultados 

La presa bóveda se discretizará con el mismo tipo de elementos cuadráticos para 

materiales viscoelásticos que para el suelo de cimentación. El dominio fluido (el agua 

embalsada) se discretizará en elementos de contorno localizados en las interfases agua-

presa y agua-terreno (geométricamente estos elementos son los mismos que para las 

regiones sólidas). 
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5.4.2 Influencia del ángulo de incidencia sobre la respuesta de la presa. 

5.4.2.1 Onda SH. 

 

Figura 5.10. Módulo de la Función de Transferencia para un nodo situado en el estribo a la altura de la 

coronación.  
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Figura 5.11. Módulo de la Función de Transferencia para un nodo central situado a la altura de la 

coronación, en el plano de simetría. 

 

Figura 5.12. Módulo de la Función de Transferencia para un nodo del estribo en el fondo del embalse, en 

el plano de simetría. 
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La figura 5.10, 5.11 y 5.12 nos muestra la amplificación de la respuesta en 

frecuencias del movimiento anteroposterior para el caso de embalse lleno de agua. Se 

han representado para tres nodos significativos de la estructura: nodo situado en el 

estribo a la altura de coronación de la presa, nodo situado a la altura de coronación en el 

plano de simetría y nodo situado en el estribo en el fondo del embalse en el plano de 

simetría.  

Puede observarse que en la figura 5.10, para frecuencias de bajo rango, la 

respuesta de la estructura apenas ofrece variaciones en lo que a la hipótesis de � 
 0° y � 
 30° se refiere. Es para frecuencias de rango alto, donde la respuesta de la estructura 

si se ve influenciada por el valor del ángulo de incidencia. 

Por lo que respecta a la figura 5.11, se puede observar la importante 

amplificación que sufre la respuesta para un nodo situado en el punto central de 

coronación de la presa en caso de embalse lleno. Esto se debe a la imposibilidad de 

disipación de energía a través del canal.  

La figura 5.12 nos muestra la amplificación para el caso de un nodo situado en el 

fondo del embalse en el plano de simetría, la cual ofrece importantes variaciones de la 

amplificación para casos de ángulo de incidentes de bajo rango �0°Q 30°�. 
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5.4.2.2 Onda P. 

 

Figura 5.13. Módulo de la Función de Transferencia para un nodo en el estribo a la altura de la 

coronación de la presa. 

 

Figura 5.14. Módulo de la Función de Transferencia para un nodo a la altura de coronación. 
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Figura 5.15. Módulo de la Función de Transferencia para un nodo en el estribo en el fondo del 

embalse, en el plano de simetría. 

 No se aprecian grandes variaciones en el valor de la amplificación en la gráfica 

5.13 entre los diferentes valores de � que se han considerado. No ocurre lo mismo en la 

gráfica 5.14, donde el valor de la amplitud adquiere cotas muy altas inicialmente para 

después reducir su valor de un modo considerable conforme vamos evolucionando a 

través del rango de frecuencias. Finalmente, podemos observar cómo el nodo situado en 

el fondo del embalse (figura 5.15) ofrece la peor respuesta posible en comparación con 

el resto de nodos, para los diferentes casos del ángulo de incidencia considerados.  
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5.4.2.3 Onda SV. 

 

Figura 5.16. Módulo de la Función de Transferencia para un nodo en el estribo a la altura de la 

coronación. 

 

Figura 5.17. Módulo de la Función de Transferencia para un nodo central a la altura de 

coronación en el plano de simetría. 
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Figura 5.18. Módulo de la Función de Transferencia para un nodo en el estribo situado en el fondo del 

embalse, en el plano de simetría. 

 De las gráficas 5.16, 5.17 y 5.18 podemos sacar la conclusión de que la 

respuesta pésima de la estructura se produce para valores de � muy próximos al ángulo 

crítico, siendo el nodo central situado a la altura de coronación el más perjudicado.  
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6 Conclusiones y desarrollos futuros 

6.1.1 Revisión y conclusiones. 

En este proyecto fin de carrera se ha abordado la inclusión, formulación e 

implementación de un nuevo ángulo de incidencia en las ecuaciones de propagación de 

las ondas sísmicas.  

Del mismo modo, se ha abordado el estudio de un modelo tridimensional de 

elementos de contorno en el dominio de la frecuencia para el estudio de problemas 

donde coexisten regiones de naturaleza elástica, fluida y poroelástica. Este modelo se ha 

aplicado con éxito al estudio del comportamiento de presas bóveda sometidas a 

solicitación sísmica. El sistema, en este caso, está constituido por la presa, el terreno 

donde ésta se cimenta y que dibuja el cañón y el vaso, así como el agua embalsada. Las 

ecuaciones del MEC se aplican a cada una de las regiones del sistema individualmente. 

El acoplamiento posterior se realiza en las interfases del modelo de una forma directa y 

rigurosa a través de ecuaciones adicionales de compatibilidad y equilibrio. 

Este trabajo sigue una línea iniciada hace más de 20 años por profesores de la 

División de Mecánica de los Medios Continuos y Estructuras perteneciente al Instituto 

Universitario SIANI de la Universidad de Las Palmas de Gran Canaria. Uno de los 

campos de investigación de este grupo se centra en el conocimiento de la respuesta 

sísmica de presas bóveda; este campo de investigación no se cierra aquí. Otros trabajos 

tomarán el testigo dejado por éste siguiendo algunas de la líneas de investigación que 

aquí se inician, con el objetivo final de un conocimiento lo más profundo posible del 

problema. 

Cuando se marcaron los objetivos del proyecto, se planteó la necesidad del 

estudio detallado de varios factores influyentes en la respuesta sísmica de presas, 

principalmente el ángulo de incidencia de las ondas. Este objetivo ha sido cubierto y 

además se han desprendido otros estudios relacionados con otros factores que han sido 

analizados de forma secundaria, pero que también revelado tener un alto interés. 
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Se han analizado, principalmente, dos problemas: una estructura cilíndrica 

semienterrada en el semiespacio y un modelo de la presa de Morrow Point. De dicha 

presa, se ha optado por el estudio del modelo de canal bajo con embalse cerrado. 

Los análisis se han realizado a través del Método de los Elementos de Contorno 

y se ha trabajado en el dominio de la frecuencia.  

En referido a los dos primeros capítulos, se realizó una introducción al trabajo y 

se desarrolló de forma teórica todas las ecuaciones que conforman el campo de la 

Elastodinámica. 

A lo largo del tercer capítulo se abordó el Método de Elementos de Contorno, y 

todo lo que ello conlleva: ecuaciones de gobierno, tipos de elementos a utilizar en la 

discretización, etc. 

Ha sido en el capítulo cuarto donde se introdujeron las ecuaciones de 

propagación de las ondas sísmicas, incluyéndose en éstas al nuevo ángulo de incidencia ��� permitiendo dotar a la excitación sísmica de un carácter más real.  

Finalmente, en el capítulo quinto se ha incluido el problema de la estructura 

semienterrada, cuya finalidad se fundamentaba en comprobar la validez de las nuevas 

ecuaciones de propagación de las ondas, la cual ha sido satisfactoria; por lo que respecta 

al modelo de análisis de la presa de Morrow Point, se abordó el estudio de dicho modelo 

con el fin de someter a dicha estructura a una solicitación sísmica, analizando la 

influencia del ángulo de incidencia sobre la respuesta de la misma principalmente. Para 

ello, se enfocó el análisis sobre diferentes puntos de la estructura, obteniéndose 

interesantes conclusiones: 

• Habiéndose estudiado diferentes valores del ángulo de incidencia para 

los tipos de onda existentes (SH, P y SV), se observa que la onda SH �� 
 0°� provoca los valores máximos de la amplificación para el nodo 

situado en el estribo, a la altura de coronación de la presa. 

• Por lo que respecta a la onda SV, ésta provoca los valores máximos de la 

amplificación para valores muy próximos al ángulo crítico en el punto 

central de la presa, a la altura de coronación de la misma.  
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6.1.2 Desarrollos futuros.  

Con este capítulo ponemos punto y final a este proyecto fin de carrera, aunque el 

estudio de investigación realizado no finaliza aquí. Algunas de las líneas de 

investigación que en este trabajo se plantean podrán ser desarrolladas en un futuro 

próximo. A continuación, citaremos algunas posibles vías en las que sería interesante 

profundizar, con el fin de avanzar en el conocimiento de la respuesta dinámica de presas 

bóveda: 

• Completar los estudios realizados con modelos que incorporen los 

sedimentos que puedan formarse en el fondo del embalse y que pueden 

alterar la respuesta sísmica de la estructura. 

• Profundizar en el estudio de ondas Rayleigh, ensayando un abanico más 

amplio de ángulos de incidencia y tratando una mayor variedad de 

problemas. 

• Así mismo, profundizar en el estudio de los factores analizando cuando 

la excitación viene dada por el resto de ondas (SH, P y SV). 

• Abordar el estudio de otras zonas de la presa que se encuentren entre la 

coronación de la misma y el estribo, lugar donde las incidencias cercanas 

a la rasante podrían provocar respuestas muy desfavorables. En este 

proyecto hemos centrado el estudio sobre la zona central de la 

coronación por ser un punto de respuesta muy elevada, así como en la 

cimentación por ser una zona especialmente sensible. No obstante, el 

estudio realizado nos ha revelado que zonas intermedias entre éstas 

pueden tener un comportamiento que requiere ser estudiado. 

• El estudio de la combinación de ondas incidentes es un caso que ha 

resultado tener especial interés. Pese a la aleatoriedad de las 

combinaciones de ondas que pueden producirse en un terremoto, 

conviene profundizar en el estudio incluyendo diferentes tipos de ondas 

al mismo tiempo, o evaluando el rango de las combinaciones de ondas 

que provocan las respuestas más desfavorables; es decir, el terremoto 

pésimo para la estructura. También se puede ampliar el estudio a otros 

modelos. 
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