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Capitulo 1

Introduccion

1.1. Antecedentes

Desde mediados del siglo XX y debido a la construccion e importancia de las
obras de infraestructura proyectadas (centrales nucleares, grandes puentes y edi-
ficios), la obtencion de la respuesta sismica de estructuras enterradas ha sido un
problema de mucho interés para los ingenieros civiles. Algunos trabajos al final de
la década de los 60 alertan sobre los factores a tener en cuenta en los modelos que se
desarrollen para evaluar la respuesta dindmica de este tipo de estructuras [Il 2]. En
mayor medida que para estructuras superficiales, en estos estudios pioneros ya se
adelanta que la respuesta dinamica esta basicamente determinada por los fendmenos
de interaccién dinamica entre la estructura y el terreno que la circunda. Este tipo de
fendémenos, por otra parte, estan influidos principalmente por el grado de enterra-
miento de la estructura, la estratigrafia, la rigidez relativa estructura-suelo y, en el
caso de sismos o vibraciones, el caracter propagatorio de la excitacion. Asi, por tan-
to, el analisis riguroso del problema obliga a utilizar modelos que permitan tener en
cuenta los aspectos mencionados del problema: 1) estructura y suelo con su rigidez,
amortiguamiento y geometria reales, 2) caracter propagatorio de la excitacién y 3)
interacciéon dindmica rigurosa estructura-suelo. Existe una gran tradicion de mo-
delos analiticos (basados en el planteamiento y resolucion de las ecuaciones de la
elastodinamica) para resolver alguno de estos problemas. Sin embargo, teniendo en
cuenta la complejidad de los efectos implicados, estos modelos se han aplicado ex-
clusivamente a problemas sencillos con importantes simplificaciones geométricas y
de comportamiento. Por otra parte, durante la segunda mitad del siglo XX, el desa-
rrollo en paralelo de los Métodos Numeéricos para resolver las ecuaciones implicadas
ha permitido formular modelos numéricos rigurosos de este problema. En particular,
son especialmente aptos, y han tenido éxito reconocido, aquellos que incorporan Ele-
mentos de Contorno para el tratamiento numérico de la region suelo (sélido infinito).
Para la estructura o cualquier zona acotada del modelo, el tratamiento con Elemen-
tos Finitos o de Contorno es indiferente. Esto es asi, en problemas dinamicos, ya
que el Método de los Elementos de Contorno incorpora de forma natural las condi-
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ciones de radiaciéon en el infinito. Para este tipo de regiones el Método de Elementos
Finitos requiere de la consideracion de contornos de cierre lejanos que incorporen
dicha condicién de radiaciéon y reducen la precision. En esta direccién, y durante
los tltimos 15 anos, los profesores tutores del Trabajo han desarrollado un modelo
numérico de Elementos de Contorno que permite el estudio dinamico de problemas
que incorporan regiones de distinta naturaleza y donde la geometria, estratigrafia,
caracter propagatorio de la excitacion e interaccion mutua, se tienen en cuenta de
forma rigurosa [3, 4, B, 6, [7, 8, @, [[0]. En los tltimos 2 afos, este modelo acoplado
se ha aplicado al analisis de la repuesta dinamica de un pozo de bombeo sometido
a un tren de ondas verticales [IT]. Los resultados de este estudio han demostrado
la importancia que los efectos de interaccion, determinados por la rigidez relativa
estructura-suelo, tienen en la respuesta sismica de la estructura y, con ello, la necesi-
dad de utilizar un modelo directo que permita el analisis conjunto de estructura y
suelo. Estos métodos directos, sin embargo, tienen un importante inconveniente: su
excesivo costo computacional. En la mayor parte de los problemas de interés, la
aplicacion de estas metodologias implica la resolucion de sistemas de ecuaciones de
grandes dimensiones y con ello tiempos de ejecucion elevados. Por otra parte, existen
modelos similares al desarrollado en la Divisién en la bibliografia, pero no versiones
comerciales que incorporen las habilidades mencionadas, con lo cual, su uso esta
restringido casi exclusivamente al &mbito académico en todo el mundo. Se pretende
con este Trabajo Fin de Master, continuar con el desarrollo de un modelo numérico
sencillo tipo Winkler que permita abordar este tipo de problemas sin la necesidad
de grandes recursos informaticos. Se trata de un modelo matricial de estructuras de
barras muy sencillo de programar, que tiene en cuenta la interaccién con el suelo a
través de una serie de muelles y amortiguadores cuyas constantes, su determinacion,
seran el objetivo central de este trabajo. Alcanzado este objetivo, se dispondra de
una herramienta interesante para la comunidad de ingenieros civiles interesados en
estos problemas. Esta linea arranca con el Proyecto Fin de Carrera defendido por
el Autor para obtener el titulo de Ingeniero Industrial en la ETSII de la ULPGC
en el ano 2009, donde se formulaba el modelo matricial para la estructura. En este
Trabajo Fin de Master se profundizara en el estudio de las expresiones existentes
en la bibliografia para las impedancias que representan la interaccion con el terreno
[T2, 3] y se propondran algunas evoluciones de las mismas. Se aplicard el modelo
Winkler al calculo de la impedancia dindmica de una pila de puente. Se analizaran
las posibilidades y limitaciones de cada una tomando como referencia los resultados
obtenidos con el modelo directo de Elementos de Contorno para una bateria de casos
seleccionados.

1.2. Objetivo del Trabajo Fin de Master

El objetivo de este TFM es la formulacién e implementacion de un modelo tipo
Winkler muy simple y de facil aplicaciéon en la practica, para el analisis de estas
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estructuras. En este modelo la estructura se discretiza con elementos finitos tipo
viga Timoshenko (incorpora deformacién por cortante) y el suelo se sustituye por
resortes y amortiguadores repartidos a lo largo de la viga que intentaran simular
la interacciéon mutua. Los valores de la rigidez y amortiguamiento de estos resortes
dependeran de la frecuencia de la excitacién y no existe una expresion aceptada
y general para cualquier tipo de problema. De los miiltiples problemas dinamicos
a considerar, nos centraremos en la obtencién de rigidez dindamicas horizontal de
pilas de puentes hincadas en un estrato sobre base rigida. Esta rigidez dinamica
(impedancia) no es otra cosa que la relacion carga/desplazamiento en la cabeza
de la pila y permitira caracterizar dindmicamente a este elemento. Pila y estrato
pueden considerarse ahora un macroelemento que incorpora la interacciéon mutua
y que puede introducirse de forma sencilla en un programa de elementos finitos
tipo barra convencional que permitira modelar el comportamiento dinamico de la
superestructura.

1.3. Estructura del Documento

Después de este Capitulo introductorio, el Capitulo B se centra en la formu-
lacion matematica del modelo de calculo matricial de estructuras de barras para el
analisis en el dominio de la frecuencia de una viga Timoshenko vertical de rigidez
e inercia variables, con resortes y amortiguadores distribuidos. La excitacién es un
campo de desplazamientos armoénico horizontal que activa estos resortes. El Capi-
tulo B se centra en el modelo de la interaccion suelo-estructura. Aqui se revisaran
las expresiones utilizadas en la bibliografia para los resortes y amortiguadores que
representan la interaccion suelo-estructura. Se estudian sus avances y limitaciones
bésicas y se proponen algunas mejoras. En el Capitulo Hl se presentan resultados de
impedancia horizontal de pilas de puentes para una bateria de casos elegidos a prio-
ri. Se estudian las diferencias debidas a las distintas expresiones de la interaccion
estudiadas en el Capitulo Bl Tratandose de resultados preliminares, el Capitulo
extrae algunas conclusiones parciales y, sobre todo, propone numerosas actuaciones
futuras en la misma linea.






Capitulo 2

Modelo simplificado para el
calculo sismico de una estructura
enterrada

2.1. Introduccion

El objetivo principal de este capitulo es presentar un modelo simplificado para
el analisis dinamico de una estructura enterrada, para la cual se considera un com-
portamiento de viga a flexion teniendo en cuenta ademas el efecto de la deformacion
por cortante.

En este capitulo se expone brevemente la teoria clasica de vigas, para después
explicar el efecto de la deformacién por cortante y su inclusiéon en las expresiones
que describen el comportamiento de la estructura. El siguiente paso es discretizar
las ecuaciones mediante elementos finitos, calculando las cargas equivalentes en los
nodos y la matriz de rigidez elemental haciendo uso del Principio de los Trabajos
Virtuales.

Finalmente se plantea el analisis dinamico calculando para ello la matriz de masa
y explicando brevemente la naturaleza del campo incidente. Es en este punto donde
se considera el efecto del suelo como una distribucién de impedancias horizontales y
a giro repartidas a lo largo del tramo enterrado de la estructura (modelo Winkler).

2.2. Teoria de vigas clasica

El modelo més simplificado para describir el comportamiento de una viga a flex-
ién (tanto cuando la geometria de la seccion y el material de la viga son constantes a
lo largo de su longitud, como cuando no) es aquel en el que s6lo se tienen en cuenta
deformaciones por flexion y fuerzas de inercia transversales, y consecuentemente se
desprecian las deformaciones por cortante y los efectos de inercia rotacional. Este
modelo, en el que se asume también que la secciones planas contintian siéndolo des-
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pués de la aplicacion de las cargas, es comtinmente denominado como el modelo de
vigas de Euler-Bernoulli.

AAAAAAAAAAA

M M+dM

V+dv

Figura 2.1: Elemento diferencial

Escribiendo la ecuacion de equilibrio transversal para una seccion de longitud
diferencial de la viga (figuralZdl) podemos llegar a las siguiente expresion

(V4+dV) -V +q(z)de =0 s %+q(x):0 (2.1)

Del equilibrio de momentos se obtiene que el cortante V' es

d3
V= —Eld—;; (2.2)

que sustituyéndolo en (1), la ecuacion que define el equilibrio de un elemento
diferencial es
d*v
Fl— =q(x 2.3
=) (23)
donde v es el desplazamiento transversal, E el modulo de elasticidad del material e
I la inercia de la seccion.
Consideremos una viga como la de la figura sobre la que actuan fuerzas
externas tales como cargas verticales y momentos contenidos en el plano xy.
La teoria de vigas clasica, o de Euler-Bernoulli, se basa en las tres hipotesis
siguientes:



Teoria de vigas clasica 11

Seccion transversal
Ay

7

Figura 2.2: Vista y seccién de una viga de longitud L

= Los desplazamientos en la direccién del eje y de todos los puntos de una seccion
transversal son iguales a los del punto de corte entre el eje longitudinal = de
la viga y dicha seccion.

» El desplazamiento lateral en la direccion z de cualquier punto es nulo.

= Las secciones transversales planas y normales al eje de la viga antes de la
deformacién, permanecen planas y ortogonales a dicho eje después de la de-
formacion. (figura 2Z3)

Figura 2.3: Deformacién por flexién. Teoria clasica de vigas.
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2.3. Deformacion por cortante. Viga Timoshenko

Existe un buen nimero de casos en los que la presencia de vigas de gran canto
en relaciéon con su longitud hace necesaria la consideracion de las deformaciones
provocadas por el esfuerzo cortante, despreciadas en la teoria clasica de vigas. Se
muestra en este apartado la influencia de considerar la deformacion producida por
el cortante asi como las ecuaciones que nos permiten obtener el desplazamiento
transversal.

La teoria de vigas de Timoshenko comparte las dos primeras hipétesis de la teoria
de vigas clasica. Sin embargo, la tercera hipdtesis que se establece no coincide con
la de la teoria clasica. La nueva hipétesis es:

= Las secciones transversales planas y normales al eje de la viga antes de la
deformacién, siguen permaneciendo planas pero no necesariamente normales
al eje después de la deformacion.

Dicho esto, el desplazamiento transversal v(x) en la direccién del eje y se puede
expresar como la suma de dos desplazamientos, uno vy(x) provocado por el compor-
tamiento de flexién y otro v.(z) al considerar la deformacién por cortante.

v(@) = vp(x) + ve(x) (2.4)

A
A
f M | N’
| ) v \
A' A
Viga Euler-Bernoulli. Viga Timoshenko.

Figura 2.4: Giro de la seccién y giro de la normal al plano medio

Hay que aclarar que el giro de la seccién no es consecuencia de la deformacién
por cortante, que por contra si participa en el giro de la linea media.
Si nos fijamos en la figura P24l se observa claramente que

» El giro en la seccion es debido tnicamente a vy(x).

= Fl giro en la linea media y normal a la seccién es causado por la deformacion
total v(x).
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= Las condiciones de contorno se imponen casi siempre sobre el giro, por lo que
sobre todo interesan los giros derivados de la deformacién de flexion usual vy,
sin considerar la influencia del cortante.

Ya se ha dicho que el desplazamiento lateral en la direccion del eje z es nulo.
Sin embargo, a parte del desplazamiento transversal v(z), se produce también un
desplazamiento u(z,y) en la direccién del eje x perpendicular a la seccién como
consecuencia del giro de la misma, que se obtiene derivando vy (z):

dvf
u(@,y) = —y— (2.5)

Las ecuaciones que definen la deformacion longitudinal ¢, y la distorsion angular

Yy S€ obtienen de derivar el campo de desplazamientos, asi

ou d?vy
ov,
oy = 2.7
’Y ) ax ( )

Segun la ley de comportamiento elastico la tensiéon normal o, y la tensiéon tan-
gencial 7,, que aparecen en la seccién transversal son:

dQU f
dx?

v,
Tay = Wy = N%

Ope = Feyw = —Ey (2.8)

siendo E el modulo de elasticidad y w la rigidez transversal del material.

Se hace necesario a esta altura realizar una aclaracion en cuanto a las tensiones
en la seccién. Mientras que la variacion de la tensién normal o, a lo largo del
canto es lineal, la variacién de la tension tangencial 7., se supone constante cuando
segun la teoria de vigas sigue una distribucién polinémica. Para solucionar este
problema se acepta la hipdtesis de tension tangencial constante, pero modificada
por un coeficiente de manera que el trabajo de deformacién de la tensién tangencial
coincida con el de la teoria de vigas.

dv,.
Tay = O (2.9)

llamando a a modulo de cortadura, el cual es constante y depende tinicamente de
la forma de la seccién [14].

El momento M se calcula integrando el producto de las tensiones normales por
la distancia y a la linea media, y el esfuerzo cortante V' se obtiene integrando las
tensiones tangenciales, ambas en el area de la secciéon.
dQUf
dx?

V:// Tpy dA — V:auAdvc (2.11)
A

M:—//yo—mdA . M=EI (2.10)
A

dx
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De nuevo las ecuaciones de equilibrio de momentos y en la direccion del eje y
de un elemento diferencial como el de la figura Bl sobre el que actiia una carga
distribuida ¢(z) son respectivamente

M
(M+dM)—M+Vdr =0  — Ciz_xH/:O (2.12)
av
(V+dV) =V +q(z)de =0 o T +q(z) =0 (2.13)

Si metemos el valor del momento dado por (I0) en la ecuacién de equilibrio

([ZI2) se tiene:

d3vf d3vf
ETl— = — =—-FEl— 2.14
dx? v v dx? (2.14)
Sustituyendo ahora (2.14)) en (ZI3):
d*vy d*vy  q(z)
— B — — =7 2.15
dx? Fal) =0 dx? El (2.15)
Por otro lado, sustituyendo (ZTI) en [ZI3):
v g(2)
= ——" 2.16
dzx? apA (2.16)
Si igualamos (ZI0]) con (.14 se obtiene:
dv, dPuy
A =—FEl— 2.17
W dx? (2.17)

que relaciona v, y vy.
La ecuacion diferencial del desplazamiento transversal conjunto se obtiene derivan-

do dos veces la ecuacion (ZI0)

d4vc__ 1 d*q(x)
det apA da?

y luego sumando (Z1H) y ZIX)

4 1 2
de* FEI  apA da?

(2.18)

Si la carga distribuida ¢(z) es nula las ecuaciones (ZI0) y (ZI6) quedan respec-
tivamente:

d*v

dxj = (2.20)
2

v (2.21)

da?



Discretizacion mediante elementos finitos 15

2.4. Discretizacion mediante elementos finitos

Para resolver las ecuaciones diferenciales (Z20) y ([ZZI), ambas se discretizan
haciendo uso del método de elementos finitos. Para ello se divide una viga en un
numero determinado de elementos interconectados por un ntmero finito de nodos,
(ver figura Z0). Las variables primarias, vs(x) y v.(x) del problema serdn aproxima-
das dentro de cada elemento mediante los valores nodales en los extremos del mismo
y unas funciones de aproximacion, también llamadas funciones de forma, como

vp(§) = Hl(f)U{ + Hy(§)0h + H3(f)vg + Hy(£)0s (2.22)
ve(§) = Ni(§)vy + Na(§)vy (2.23

donde v/ y v] son los desplazamientos nodales en la direccién del eje y producidos
por el comportamiento a flexién de la viga, 6; y 65 los giros nodales y v{ y v§ son
los desplazamientos transversales nodales debidos al cortante.

Las funciones de forma H; (&), Hy(&), H3(), y Hy(€) estan dadas por un conjunto
de polinomios de tercer grado para un elemento lineal ¢ en cuyos extremos se
emplean como variables el valor del desplazamiento v/ y el giro de la seccién 6,
debidos a la flexién. Los polinomios de aproximacién para calcular vy son

Hi(§) =1—3¢%42¢° (2.24a)
Hy(€) = L& (1 - 26+ €) (2.24D)
Hy(€) = €% (3 - 2¢) (2.24c)
Hy(€) = L& (€= 1) (2.24d)

donde L. es la longitud del elemento.

En la figuraZ8 se pueden ver las funciones de forma H;, que representan la defor-
mada del elemento cuando se da valor unitario al grado de libertad correspondiente
manteniendo a cero el resto.

Figura 2.5: Discretizacién. Elemento finito tipo barra
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ey | s
91=1m H,(g)
Hz(g 92=1

Figura 2.6: Funciones de forma que determinan el comportamiento a flexién.

Las funciones de forma Ni(§) y No(§) son

Ni(§) =1-¢ (2.25a)
N2 (€) =¢ (2.25b)

Como en el caso de las funciones de forma H;(€), se representan en la figura X1

las funciones de forma N;(§)

vi':l} \]N /,/NZ(E)‘/ 1vi=1

Figura 2.7: Funciones de forma que determinan el comportamiento a cortante.

xT

La ecuacién (E2I7) relaciona vy y v, pero estd escrita en términos de derivadas
con respecto a x. Para escribirla en funcién de &, teniendo en cuenta que § = -,
€

podemos decir

de de dg
— = 2.2
dx d¢ dx (2:26)
dv.  dv. d§

= — 2.2
dx d¢ dx (2.27)

: a1
siendo =1
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Si seguimos derivando (Z20]) para obtener la derivada segunda y tercera tenemos:

2 2
dfdu) _1d (N Py 1y,
dr \ dx Lod¢ \ d¢ ) dx dz? L2 dg?

2 2 3 3
i d Uy _ ii d Uy g N d Uy _ id Uy (229)
dr \ dx? L2d¢ \ d¢? ) dx dx3 L3 dg3

por lo que finalmente tenemos

d3vf 1 d3vf
S~ 2 ) 2.
dz3 L2 d&3 (2.30)
dv., 1 dv,
- 2.31
dv L. d§ (2:31)
Sustituyendo (Z30) y (Z31) en la ecuacién diferencial (2.17)
1 dv 1 d®vy
AT =-FEI——1 2.32
AT de L3 des (2:32)

La derivada tercera de (Z22) y la derivada primera de (Z2Z3)) ambas con respecto
a & son
ds’l}f d3H1 f d3H2 d3H3 f d3H4
de ~ dg T ae M e T e
dv. dN; ., dN, .

e~ dg ' ag

Sustituyendo las derivadas de las correspondientes funciones de forma en (E33))

y B39

b, (2.33)

(2.34)

d3v
f; = 120 + 6L.0; — 12L.vl + 6L.65 (2.35)
dv,. e e
Introduciendo (230) y (Z30) en (Z32) y reordenando llegamos a
. 12EI L. L.
V) — Uy = m <’U{ -+ ?91 - Ug -+ ?92) (237)
Por comodidad diremos que ¢ = Llff;;.

Recordando la ecuacién () podemos decir que v/ = v; — v¢, que al sustituirlo

en (Z22) vy B37) y después de operar se llega a
vp(§) =H1(§)vr + Ho ()0 + H3(&)vo

2.38
+HL(€)0; — HL (€)% — Hy(€)us 23
’Uf — Ug = 1 f ¢(vl + %91 — Vo + %92) (239)
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Si sumamos (ZZ3) con (Z38), teniendo en cuenta ([Z4]) se obtiene

v(§) = Hy(§)v1 + Ha ()01 + H3(§)va + Ha(§)02
+(N1(§) — Hi(§))vi + (N2(€) — Hs(§))vs

ademés usando las relaciones
H1 - 1 - H3

Ny =1—-N,
la ecuacién ([40) queda

v(€) =H(§)v1 + Ho(§)01 + H(&)vo
+ Hy(§)02 + (N1(§) — H1())(v] — v3)

Si ahora introducimos (Z39) en Z41]) se llega a

(2.40)

(2.41)

(2.42)

(2.43)

o(€) = [H(€) + oM (€)) T
R GE B
+ Hs(€) + Na(€)0] 1
L)+ (©5(N(6) — @) £
Segtin la ecuacién (EF) podemos escribir el desplazamiento transversal v(€)
o (€)= V(O -+ (€)1 + V(O + v ()04
siendo

1

O = T IH(O + M)
€)= 12 | S ) + 50 - H(©)9)
l6) =~ 16 + ol |
0n©) = 12 [H2A(6) + 3 (i6) - @)

(2.44a)
(2.44b)
(2.44c¢)

(2.444)

Si en las ecuaciones (2.44)) sustituimos las funciones de forma por sus expresiones
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segin (2.24) y [ZZ3)
() = 15 26 =38 — o€ + 1+ (2.450)
L ¢ ¢
Py (€) = T+ 3 l@— <2+§>§+1+§] (2.45Db)
n(6) = o [26 - 36— o (2.45¢)
we =5 e (1-5)e- 3 (2.454)

En la seccion se dijo que el giro # es tnicamente consecuencia del desplaza-

miento transversal debido a la flexion v¢, por lo que se puede escribir

d

0(¢) = d—évf(ﬁ)

Si usamos la relacion Hy(€) =1 — H3(§) en (Z33)

V(&) = Hi(&)vy + Ha (€)1 + H3(&)vo
+ Hy(§)02 — v + H3(§)(v] — v5)

Introduciendo (Z39) en [47) y operando

0s(©) = | ) + fﬁ@ﬂm+[ﬂxo+—f—£wﬁ@ﬂa

¢
1+¢ 1+¢ 2
¢ Le

1
O+ |H©) + 2 o) o o

Podemos escribir (248) de manera mas compacta como

+

vp(§) = p1(§)v1 + a(§)01 + p3(§)v2 + Pa(§)fa — vy

siendo
(e =1 - gt + gt
ex€) = o [201+ ) = 4+ 0+ 2€7
oo®) = 153 - 2)
o) = g2 = 2+ )

(2.46)

(2.47)

(2.48)

(2.49)

(2.50a)
(2.50b)
(2.50¢)

(2.50d)
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El giro, que se obtiene por medio de la derivada primera de [2.49), puede expre-
sarse como

0(8) = @1(E)vr + ¥5(€)01 + @5 (§)va + ) (€)02 (2.51)
siendo
i) =t - i) (2.52)
e = 12— e[k g - (44 g)e+ 3¢ (2.52b)
6= - -9 (2.5%)
oie) = 8~ Dby (2.524)

Hasta aqui hemos obtenido las expresiones ([2.43)) y (Z21]) que definen, respec-
tivamente, la flecha total y el giro, en cualquier punto de un elemento tipo barra
como el de la figura E£¥, a partir del desplazamiento transversal y el giro en cada
uno de sus extremos.

Fiv Fyv,
r ‘;Ml’gl : EMZ’GZ
- et 3
£=0 ] . 25—1

Figura 2.8: Elemento tipo barra

Si escribimos las ecuaciones ([2.43) y ([Z21l) de forma matricial

WO 1[0 vl va(©) wa(©)]] 6
[e@)]‘lwa(&) 4O AE O] | o (2.53)

2.5. Principio de los Trabajo Virtuales

Consideremos un dominio genérico €2 cuyo contorno I' estd sometido a unas car-
gas exteriores t y unas restricciones en desplazamientos ;, conocidos, que producen
un campo de desplazamientos u;, unas deformaciones €;; y unas tensiones o;;. Sobre
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dicho dominio se definen dos estados que satisfacen las ecuaciones de la elastodina-
mica.

S(t,w;) = (ug, €45, 045)

siendo ¢S un estado virtual conocido. No se han tenido en cuenta las fuerzas de
volumen.

El Principio de los trabajos virtuales dice que el trabajo interno realizado por las
tensiones o;; sobre el campo de deformaciones virtual de;; es exactamente igual al
trabajo externo de las cargas exteriores t sobre el campo de desplazamientos virtual
ou;, lo cual se puede expresar como

/Qéeijaij dV:/FéuztdA (254)

Aplicando este teorema a una viga como la de la figura 23 sobre la cual actian
una carga transversal ¢(x) y un momento m(x) repartidos, la expresién del Principio
de los Trabajos Virtuales (PTV) en donde se incluye el trabajo producido por las
tensiones tangenciales sobre la deformacion por cortante es

// v (06204 + 0YayTay) AV =

. . (2.55)
/ dv q(z) dx + / 560 m(z) dv + 6u’' T
0 0

donde dv, 66 son la flecha y el giro virtuales a lo largo de la viga; de;, 07,y las
deformaciones virtuales; du es el vector de movimiento virtual de lo extremos de la
viga; y T es el vector de fuerzas de equilibrio en los apoyos.

Recordando las expresiones (Z0), 1), ZX) y &), y sustituyendo en (ZhH)

I, o (v ) o (o) o (3 ) o (5] o

:/ 5vq(a:)d:c+/ s0m(z) dz + su’ T
0 0

(2.56)

Tanto vy como v, dependen unicamente de la variable x y teniendo en cuenta
que dV = dxdA

Mooz e (o) oo () o () aeoa-

—/ 5vq(a:)d:c—i—/ s0m(z) dz + su’ T
0 0

(2.57)

Llegados a este punto, seria interesante expresar esta ecuacién en funcion de la
misma coordenada natural & que fue utilizada en las secciones anteriores a la hora
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de definir el elemento finito a utilizar en este trabajo. De este modo, siendo & = s
y verificandose que
d2vf 1 d2vf dv, 1 dv,
N . - — : dr = L.d 2.58
dz>  I[2de2 ' dx L, df . & (258

la ecuacién (200) puede ser escrita como
1 dQUf 1 dQUf 1 dv, 1 dv,
—y— E(—y— - =N L, dedA =
M () 2 )+ o (25 oo (25 ) 2o

_/1 5vq(§)Led§+/1 50 m(€) L. dé + 6ul T,
0 0

(2.59)

donde du, es el vector de movimiento virtual de los nodos del elemento, dul =
[ ovy 001 dvy 0 }; y T, es el vector de fuerzas de equilibrio en los nodos, T, =

T
(R M, By My |

Los desplazamientos vy y v. dependen tnicamente de la variable longitudinal
&, por lo que al integrar en el area transversal del elemento, la ecuacién(ZZ09) se

convierte en
1 d*vy\ EI (d*vy dve.\ apA [ dv,. -
/0 [5<d§2>7§<d§2>+5<d§> Le (dfﬂ “= (2.60)

1 1
_ / 5vq(€) dé + / 50 m(€) dt + sul'T,
0 0

2
Ya hemos visto que el giro es § = %vg y por tanto 6’ = %. Escribiendo (Z60)
de manera mas compacta

! /E[/ /&/’LA/ o
/0 (59 ¢+ L vc> de =

1 / (2.61)
- /0 50 q(€) L, de + /O 50 m(€) Lo dé + sul'T,

donde v, = .
La expresion (Z4]l) determina el giro a lo largo del elemento. Si calculamos su

derivada primera con respecto a £ tenemos

0 = v + ¢ub) + pivs + @i6s (2.62)
por lo que se puede escribir
9, = Bflle X 50’ = Bféue (263)

donde By es una matriz fila y u, un vector con los desplazamientos y giros nodales

T
Br=|¢l & &% ¢} L= 6w 6]
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De la misma forma las expresiones ([2.43)) y ([Z31]) se pueden escribir como

v =1u, ; v = pou, (2.64)
0 =¢'u, ; 50 = ¢'ou, (2.65)

siendow,b:[z/;l e s 1/14] ;90/:{% © s 8021}
Para obtener una expresion de este tipo para v/, recordemos, debido a la expre-
sién ([24), que v. = v — vy y por tanto v/, = v’ — 6, por lo que restando (243) menos

21 se llega a
ve = (1 — Ph)vr + (2 — @3)01 + (Y3 — 03)v2 + (4 — ¢)) b2 (2.66)
Ahora podemos escribir (ZE0) como
v, = B.u, : dvl. = B.ou, (2.67)
siendo B, = [ 1 — ¢} s — b ¥ — ¢ vu— |

Sustituyendo las expresiones (2ZG3), (264), 6d) y E07) en E) y teniendo

en cuenta las propiedades del producto de matrices, podemos escribir la siguiente
ecuacion

apA
L

1 ET
/ [5uTBT—Bfu6 +6ul' B!
0

(2.68)
[ BTy (@) Lede + [ ul @ Tm(e) de + 5ul T,

que debe verificarse para cualquier valor de du., lo que lleva a escribir la siguiente
expresion

" EI 1 A
/ Bl de§+/ BT Bcdg} =
0 L3 0 L. (2.69)

1 1
| ¥ e L de+ | @ m(e)de+ T,

donde las dos integrales del segundo miembro determinan, respectivamente, el vec-

tor de fuerzas nodales equivalentes F, debido a una carga repartida ¢() y el vector

de fuerzas nodales equivalentes F,, debido a un momento repartido m(&). Las ex-
presiones que permiten su calculo son

F, = [ 4 a(e)Lede (2.70)
0

Fo= [ oTm(e) de (2.71)
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siendo .
F,=| Ff M Ff M|
- (2.72)
F,,=| F" M Fp My |
Las integrales del primer miembro de (ZGY) definen la matriz de rigidez. La
primera determina la matriz de rigidez a flexiéon Ky y la segunda la matriz de
rigidez a cortante K.. La suma de ambas nos da la matriz de rigidez del elemento.
De esta forma se obtiene la ecuacion matricial

(K;y+K,)u=F,+F,, +T. (2.73)

2.5.1. Matriz de rigidez

El siguiente paso es obtener la matriz de rigidez del elemento como suma de la
matriz de rigidez a flexion Ky y la matriz de rigidez a cortante K.. Ya se vio en la
seccion sobre el PTV que estas dos matrices estan definidas por las integrales del
primer miembro en la ecuacién (G). Los elementos de cada una de estas matrices
se escriben en notacion de indices como

EI
K/ = / BIZ o B! de (2.74)
auA
/ B e (2.75)

siendo cada elemento de la matriz de rigidez elemental K;; = Kifj + K.

Realizando las integrales segin (274) y (270) y sumando se obtiene la matriz de
rigidez de un elemento tipo barra de dos nodos como el de la figura incluyendo
la deformacién por cortante [14].

12E1 6ET1 12E1 6ET1

L3(1+¢) L2(1+¢) L3(1+¢) L2(1+¢)
6ET (4+9)ET ___G6EI (2—¢)EI
L2(1 (1+¢)L L2(1 1+¢)L
K= o (12JE¢3> +<;2) 12%#5) _( J%(@I (2-76)
L3(1+¢) L2(1+¢) L3(1+¢) L2(1+¢)
6E1 (2-¢)EI BEI (4+9)EI
L2(1+¢) (1+¢)L L2(1+¢) (1+¢)L

Notese la similitud entre esta matriz de rigidez que incluye la deformacion por
cortante y la matriz de rigidez de una viga Euler-Bernoulli, coincidiendo ambas para
el caso en el que no se considera la deformacién por cortante, ¢ = 0.

La matriz (2270) expresa la relacién que existe entre los desplazamientos y giros
nodales y las fuerzas externas aplicadas en los extremos, segiin

F = Ku (2.77)

T
siendo F = [ Fi M, Fy M, } un vector que representa el segundo miembro de
la ecuacién (73 y es la suma de todos los vectores de fuerzas nodales, esto es

F=F,+F,+T (2.78)
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2.6. Analisis dinamico

Hasta ahora se ha supuesto el comportamiento del elemento como estatico. Si
queremos realizar un estudio sobre el comportamiento dindmico ante un movimien-
to armoénico, provocado por un campo incidente de ondas, es necesario considerar
las fuerzas inerciales que la masa y las aceleraciones provocan. La ecuacién ma-
tricial que determina el comportamiento dinamico de un elemento, considerando
amortiguamiento de tipo histerético tal y como se explica mas adelante, es:

Mii + Ku=F (2.79)

siendo 1 el campo de aceleraciones y M la matriz de masa. Los elementos de la matriz
K son ntimeros complejos de la forma K;; = Re[K;;|(1 +i2¢;;) en los que la parte
imaginaria representa amortiguamiento de tipo histerético. El vector F' contiene las
fuerzas nodales equivalentes como resultado de la suma de los diferentes efectos que
las producen, como pueden ser cargas y momentos repartidos y las fuerzas nodales
de equilibrio.

F=F,+F,+T. (2.80)

Las fuerzas y las condiciones de contorno variando arménicamente con el tiempo
son del tipo f(w; t) = fe™’. En este caso el campo de desplazamientos estd compuesto
por un régimen transitorio u’ y un régimen permanente u(w), por tanto

u(w) = u’ + ue™* (2.81)

Sin embargo, todos los sistemas fisicos contienen algtin tipo de mecanismo de
disipacion de energia, de esta forma, cuando ¢ — oo la parte transitoria desaparece.
Por tanto el campo de desplazamientos ante un movimiento armonico en el estado
estacionario puede expresarse como

u(w) = ue™ (2.82)

donde u es la amplitud del campo de desplazamientos y w la frecuencia del movimien-
to.

En el dominio de la frecuencia, la aceleracion puede obtenerse como la derivada
segunda del campo de desplazamientos u, de esta forma

i = —w ue™! (2.83)
El vector F puede expresarse como

F = Fe™t (2.84)

T
siendo F' = { Fiy M, Fy M, } el vector de las amplitudes de las fuerzas nodales
equivalentes.
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Las expresiones para calcular F, y F,, son exactamente las mismas que ZZ0) y
[&T1), con la diferencia de que ahora tanto la carga como el momento distribuidos
son de tipo armonico. Escribiéndolas en notacion de indices se tiene

1
F :/0 Yiq(§;w) Le d§ (2.85)
E = [ m(g ) de (2.86)

En estas dos tultimas expresiones se muestra el caracter armoénico de la carga
q(&; w) y del momento m(§;w), ya que ambos varian con la frecuencia del movimien-
to.

Sustituir las expresiones ([ZX3) y [2284)) en la ecuacién 1) lleva a
(K —wM)u=F (2.87)
donde el término e™* se cancela por aparecer en ambos miembros de la ecuacién.
La formulacién para la matriz de rigidez ([.70) es idéntica para el comportamien-

to estatico y dinamico, pero asumiendo para los pardmetros de los materiales en el
caso dinamico valores complejos de la forma

E = Re[E](1 + i28z) (2.88)

En adelante se expondra cémo obtener la matriz de masa para un elemento
genérico como el de la figura y cudl es la expresion que determina el campo de
desplazamientos provocado por el campo de ondas SH incidente verticalmente.

2.6.1. Matriz de Masa

Las fuerzas inerciales que aparecen en el elemento son las asociadas tanto al
desplazamiento como al giro del mismo, por lo que la matriz de masa puede ponerse
como suma de la matriz de masa traslacional y la matriz de masa rotacional.

M = M, + M, (2.89)

Es posible evaluar los coeficientes de influencia de la masa por un procedimiento
similar al usado para obtener los coeficientes de la matriz rigidez, visto en EZB],
por lo que se usara para ello las funciones de forma (4H) y [Z532). Considerando
en el PTV las cargas equivalentes de las fuerzas de inercia, tanto traslacional como
rotacional, obtenemos las expresiones

L
M, = / Wl p A d (2.90)
0

L
M, — / ool di (2.91)
0
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siendo p la densidad del material; I la inercia y A el area de la seccion.

Haciendo el cambio de variable para poner las integrales en funcién de la variable
¢ del elemento, tenemos

! T
M, = | §7pAYL. d (2.92)

M., /cp’Tp o7 de (2.93)

Los términos de cada una de las matrices de masa estan dados por las siguientes
expresiones

/ il epAw] de (2.94)

/ i I % d¢ (2.95)

Dando valores a los subindices ij en ([2.94)) y (Z3H) y calculando cada una de las
integrales, los elementos de la matriz de masa traslacional mj; y los de la matriz de

masa rotacional m ij sSon
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mhy = sy (78 + 147¢ + 706%)
miy = mby = A (44 4 T7¢ + 35¢°)
miy = mh; = 575755 (27 + 63¢ + 35¢°)
miy = mfy = — 24 (26 + 630 + 3507)
mt; — m%? = 84§ﬁ3>>2 <§A;14¢ +7¢%) i (2.96)
miy = mi, = 5245 (26 + 63 + 35¢°)
miy = mly = — 5245 (6 4 140 + T¢?)
mhs = sroagye (T8 + 147¢ + 706%)
mi, = miy = — b5 (444 770 + 35¢7)
My = At (8 4 140 + T¢?)
mh = stept.
miy = My = —W(—l +5¢)
Mg = My = _5(14?%
miy = my = — gz (—1+ 50)
g e {1 Z 0 10 297
Mys = My = g (—1 +50)
My = Mgy = g5y (—1 — 56 + 5¢°)
My = SrierL:
miy =Ml = g (—1+50)
My = goigp (4+ 5¢ + 1067)

2.6.2. Campo incidente. Ondas SH

Imaginemos un terreno con n estratos como el de la figura B9 El campo de
desplazamientos en un estrato cualquiera j, provocado por un campo de ondas SH
incidiendo verticalmente, es del tipo

vi(2) = Aje ™7 4 Bjetti® (2.98)

donde A; y B; son constantes propias del estrato y k; es el nimero de onda de cada
estrato, que se define como k; = w/cl, siendo ¢! la velocidad de propagacién de la
onda de corte en el estrato j.

Las tensiones tangenciales se obtienen mediante la siguiente expresion

dv
ne(2) = (2.99)

por lo que para el estrato j

77 (2) = pjik; [—Aje*ika + Bjeti® (2.100)

yz
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Figura 2.9: Diagrama de un terreno estratificado

En el estrato superior n, que tomaremos como referencia, las condiciones de
contorno en la superficie libre son tensiones tangenciales nulas y desplazamiento

unitario.

0= _Ane—iknzn + Bneiknzn

Resolviendo el sistema de ecuaciones (ZIOI) se obtienen A,, y B, de manera que

1 .
An — _e—zknzn

. (2.102)
Bn — _ezknzn

2

En en la interfase entre los estratos n y n — 1 debe cumplirse la continuidad en
desplazamientos y tensiones, esto es en z = 2,

V" (Zn_1) = 0" (2021)

2.103
(1) = 7 ) (210)
Haciendo uso de (208 y (ZI00)
Ane*iknzn—l + Bneiknzn—l — Anile*’ikn—lzn—l + anleikn_lzn_l
Mnlk:n _Ane_ik"”z”71 + Bneik"znl} = ,un_likn_1 [—An_le_ik”71Z”71 + Bneiknflznfl}
(2.104)

Si llamamos )
Ry, = fnr
,U/nflknfl
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y resolvemos el sistema de ecuaciones (2.104]) se obtienen A, 1y B, 1

A= %eiknl%l Kl + RZ@) A, e~ hnon-1 4 (1 — 2—1) Bneik"'z’“l} 2,105
B, = %ek (1= Ryy) Ape ™t 4 (14 Ry ) Be®ren|

Siguiendo este procedimiento se pueden obtener las constantes A; y B; de la
ecuacion ([ZZ08), que determina el campo de desplazamientos en cualquier estrato de
un terreno como el de la figura Z9 de manera que

N %eikﬂj [(1 T R§+1) Ajpre i 4 (1 - R§+1) Bj+1€ik"“2j} (2.106)
Bj =5 (L= RJ™) Ajae ™05 4 (14 BT Bypaethin|

siendo
RItH — fi+1kj41
g e
HjRj

2.7. Modelo simplificado para el estudio de
estructuras enterradas

En este trabajo se estudia la respuesta dinamica de estructuras enterradas en el
terreno. Se propone para el calculo de dicha respuesta un modelo simplificado basado
en la aproximacion tipo Winkler para vigas enterradas (BDWF - Beam on Dynamics
Winkler Foundation), en el cual el terreno estd representado por resortes y amor-
tiguadores distribuidos continuamente a lo largo de la estructura (ver figura EZT0).
Esta aproximacion se ha usado ampliamente para estimar las impedancias dinami-
cas de pilotes relacionados con estudios de interaccién dinamica, por ejemplo para
una excitacién dindmica aplicada en la cabeza de un pilote, [15, 6], 17, I8, 19, 20].
Modelos tipo Winkler han sido utilizados también, por ejemplo, para determinar los
factores de interaccién cinemética de cimentaciones pilotadas, [21, 22, 20], y tam-
bién para estimar los momentos flectores maximos sufridos en pilotes sometidos a
excitacion sismica, [20, 12, 23].

El problema del comportamiento dindmico de estructuras enterradas poco es-
beltas ha recibido menos atencion, en parte debido a la mayor complejidad del
problema. Dos trabajos dignos de mencién son los de Gerolymos y Gazetas [24]
sobre estructuras muy rigidas y el de Mylonakis [I2] sobre estructuras enterradas
flexibles apoyadas sobre una base rocosa.

En este trabajo se intenta extender estos modelos a estructuras de gran canto en
las que hay que tener en cuenta la deformacién por cortante. Por tanto, se considera
la estructura como una viga con deformacién por cortante, la cual se discretiza
mediante elementos finitos como el de la figura Z8, para el cual se han obtenido
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Figura 2.10: Esquema del modelo Winkler para un terreno estratificado

expresiones de la matriz de rigidez y masa, ademas del calculo de las fuerzas nodales
equivalentes debidas a una carga y un momento repartidos.

El principal inconveniente que presenta este modelo es el calculo de los valores
de la rigidez y amortiguamiento del terreno que contiene a la estructura y que
pueden variar por numerosos factores como son las caracteristicas del terreno y su
estratigrafia. Se muestran méas adelante algunos modelos escogidos para obtener
valores adecuados de las impedancias.

Explicaremos a continuacion el proceso de discretizaciéon de una estructura me-
diante elementos finitos asi como la inclusiéon en el modelo del efecto del terreno
mediante muelles y amortiguadores. En la parte izquierda de la figura EZTT] se puede
ver una estructura enterrada la cual se ha discretizado mediante elementos finitos
tipo barra de dos nodos como se muestra en la parte derecha de la misma figura.

Si tomamos uno de los elementos que se ha utilizado en la discretizacion y que se
encuentra contenido totalmente en un estrato j cualquiera (ver figura EZT2), sobre
el que actia un campo de ondas SH incidente de manera que este provoca desplaza-
mientos vy(z) y giros 07(z).

El terreno que rodea al elemento se sustituye por una serie de muelles y amor-
tiguadores repartidos a lo largo del mismo, que se trataran como impedancias que
se oponen al desplazamiento horizontal y al giro y que se traducen en una carga ()
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Discretizacion

—

Figura 2.12: Elemento completamente contenido por un estrato

y un momento m(&) repartidos a lo largo del elemento (ver figura ZZI3]). Con el fin
de generalizar el modelo se considera ademas el elemento ligado en el nodo 1 a una
base mévil, la cual sufre un desplazamiento horizontal v} y un giro 6% provocados
por el campo incidente. La uniéon en el nodo 1 se realiza también mediante muelles
y amortiguadores a modo de impedancia.

2.7.1. Carga distribuida

Si tenemos en cuenta solo los desplazamientos v (z) del campo incidente, el efecto
que producen junto con las impedancias horizontales es el de una carga distribuida
q(z) que se puede escribir como

q(z) = (K, + z'wCy)(v}' —v) (2.107)
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Ki+iwCh | K'+iwC”

> 9? @ 1 ‘7\11;

Figura 2.13: Modelado de un elemento inmerso en un estrato

El vector de fuerzas equivalentes que se aparecen como consecuencia de la carga
distribuida dada por la expresiéon ([ZI017) se calcula como

FY
M{I ‘2 . j
Fo= | :/Zl T (K, + iwC,) (v} — v) dz (2.108)
M3
Si separamos (ZI08) como suma de dos integrales y sacamos factor comin la
impedancia

F,= (K, + iwC,) U:Q P vl dz — /:2 Pl dz} (2.109)

Vamos a calcular por separado cada una de las integrales de la expresién (ZI09).
Si nos centramos en la primera integral e introducimos como campo incidente la
expresion (205, para cada grado de libertad m, podemos escribir

/Z2 Vithm (2) dz = A; /Z2 e %%, dz +B; /Z2 ekizap,, dz (2.110)
zZ1 Z1

zZ1

J J

€_im im

donde el indice j indica el estrato.
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Hay que resaltar que en las integrales ¢/ im ¥ egm estan en funcion de la variable z,
las funciones de forma 1, dependen de una variable local £ a lo largo del elemento
que toma valores entre 0 y 1. Por tanto hay que hacer un cambio de variable de
integracion

g:zzzl . a=¢Lotam . dr=L.de (2.111)
que sustituidos en las integrales de (ZI1M), éstas quedan como
1 .
A / e~ ELetn)y, T dE + B, / ehi€Leta)y, T e (2.112)
0 0
ej—im e{m

En consecuencia

1
7 o —ikiz —ik; L
i = Loe™him [ eiety, dg

. 4 1
el = Loe™i™ /0 eitetap,, dé

Las integrales a resolver en estas dos tultimas expresiones son del mismo tipo, la
unica diferencia es el signo del exponente. Podemos escribir genéricamente ambas
integrales

I = /01 e9€e),, de (2.113)

siendo a = ik; L. 6 a = —1k; L. segun el caso.
Para cada grado de libertad m, resolviendo la integral en (ZI13)) se tiene que

1
I = ~TT [0*(1+ ¢)e” + a?p(1 — ) — 6a(l +e") +12(e" — 1)]
I = m 022+ ¢+ pe) + 2a(4 + ¢ + 2" — pe®) — 12(e” — 1)]
1 a a a a
I3 = A0 9 [a?’(l +@)e” +a’p(1 — e) — 6a(l +e*) + 12(e* — 1)}
Le a a a a a
I4:—m [a2(¢+¢€ +26 )+2a(¢—2—46 —Qbe )+12(6 —1)}
(2.114)
Volviendo a la expresién (ZI09) resolveremos ahora la segunda integral
/22 WTvdz (2.115)

Recordemos que el desplazamiento v a lo largo del elemento finito esta definido
por v = pu, siendo u, un vector con los desplazamientos y giros en los nodos,

T
u, = [ v 01 vy 0Oy } . Sustituyendo en (ZI13) y haciendo el cambio de la variable
z por & se tiene

/0 T, L, de (2.116)
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El producto 9”4 nos da una matriz de dimensiones 4 x 4, por lo que podemos
escribir

qi1 q12 .- (14
q=L. | (2.117)
a1 -+ .. Gaa

siendo q una matriz simétrica. Los elementos de esta matriz se pueden poner en
notacion de indices como

i = Lo [ Gt dé (2.118)

Resolviendo cada una de las integrales que salen de dar valores a los subindices
ml en (ZIIF) se obtienen los elementos de la matriz q

g = m(m + 147¢ 4 70¢?)
G2 = o1 = ﬁ(@ + 776 + 35¢%)
(13 = 31 = ﬁ(w + 630 + 35¢%)
G4 = qu = m(ze‘ + 636 + 35¢%)

3

T m(e; + 14¢ + 7¢7) -
(23 = Q32 = m(% + 630 + 35¢°)
Qo1 = Quz = —m(e’ + 14¢ + 7¢7)

433 = ﬁ(?g + 147¢ + 70¢°)
G314 = Qug = _Wi@?m + 77¢ + 350%)

Qu = : ~(8 + 14¢ + 7¢%)

840(1 T )2

Finalmente la expresion ([ZZI09) se puede escribir de la siguiente forma

€_i1 €
. €_; €; A .
Fo=(fiee) | 2 | [0 ) pGan, @1
€_ia €iy
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Figura 2.14: Elemento diferencial

2.7.2. Momento repartido

El momento repartido es consecuencia del giro que provoca el campo incidente
en la estructura. Imaginemos un pilote enterrado en un terreno cualquiera en el
cual actiia un campo incidente de ondas SH. Como consecuencia de la interaccion
cinematica las secciones del pilote sufren un giro que inducen en la cara en contacto
con el terreno tensiones tangenciales. Si tomamos un elemento diferencial del pilote
el cual sufre un giro o aparecen en su cara lateral tensiones tangenciales (ver figu-
ra.T4). La resultante de dichas tensiones es nula, no asi el momento que producen
con respecto al eje AA’. Si extendemos este efecto a lo largo de todo el pilote aparece
un momento repartido.

Siguiendo un proceso andlogo al de la carga repartida del punto anterior, ahora
consideraremos sélo el giro 0;(z) del campo incidente y las impedancias de giro,
segun la figura ZT3 El momento repartido m(z) esta definido por

m(z) = (Ky +iwCy) (6] — 0) (2.121)

El vector de fuerzas equivalentes como consecuencia del momento repartido dado
por la expresién ([ZZIZ]) se calcula como

"

F, = Min = / L T (Kt iwC) (0 — 0) dz (2.122)
F2 z1 Le
Mg"
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Si separamos esta tltima expresion en suma de dos integrales y sacamos factor
comun la impedancia de giro

F,, = (Ko + iwCy) [/ o] dz - / T dz] (2.123)
z1 e 21 e

Se trataran las integrales de la expresion (ZIZ3)) por separado.

En el epigrafe ZG.2A1a expresion (ZIH) nos da el valor del desplazamiento segun el
campo incidente. Calculando su derivada primera tenemos el valor del giro provocado
por el campo incidente para cada estrato j.

o dv? . _ik;z ikjz

Sustituyendo (124 en la primera integral del segundo miembro de ([ZIZ3) y
separando en una suma de integrales, para cada grado de libertad m se puede escribir

z 1 ) _'k. z: i z .
g de = = Ay [l da By [ etz (2125)
Z1 Le Le z1 zZ1

J &I

€ im im

Realizando el mismo cambio de variable que se vio en el epigrafe B71] para la
carga distribuida segin las expresiones (ZI10]) tenemos

1 1
ik | A / eki(Lebta) o e 3. / giki(Leta) ol e (2.126)
0 0

J J
€ im Eim

Por tanto
. ) .
gj—im — e—zkal/ e—szLefsp:n dé-
0
] ik ! ikjL /
0
Como antes, ahora podemos escribir

1
Jm:/ € de (2.127)
0

siendo a = ik;L. 6 a = —ik;Lg segin el caso.
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Resolviendo para cada grado de libertad m la integral en (2.121)

6 a a
h= g o+ e) 20— )
1
Jy = ——— |—a*(14+¢) + a(pe® —4 — ¢ — 2e) — 6(1 — ¢°
2= wirg ATl ) —6(1—e) -
=—Ji = —————la(l+e")+2(1 —¢"
1 2 _a a a a
J4:m[a (14 ¢)+alp—2— ¢e® —4e*) —6(1 —e )}
Nos centraremos ahora en resolver la segunda integral de ([ZIZ3)
=21 T
/Zl e 0dz (2.129)

Ya sabemos que el giro # se puede obtener como § = ¢'u,.. Sustituyendo en la
expresion (ZI29) y cambiando la variable z por &

tl T 1 !
—p — L.d 2.1
/0 Le‘p Le‘p ue € 6 ( 30)

El producto ¢T¢’ da como resultado una matriz de dimensién 4 x 4, por lo que

podemos escribir

hll h12 h14

1 hoi  hao :
h=— 2.131
Le | ST 2430

h41 h44

siendo h una matriz simétrica cuyos elementos se obtienen mediante la expresién en
notacion de indices

1 1
Pt = / o o de (2.132)
e J0O

Resolviendo la integral (ZI32) para cada valor de los subindices ml, se tienen
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los elementos de la matriz h

6
" T gL
1456
hia = ho1 = —w
6
h13 - h31 - _m
1456
hiy = hy = —75()(1 n ¢)Z
L
hoy = =—————(4 + 5¢ + 10¢?)
30(1 2
(_(1 : ;2) (2.133)
hos = hs3y = m
L,
hos = hyo = m(—l — 5¢ + 5¢7)
Bow — 6
P51+ ¢)2Le
1450
hay = hys = W
L,

Finalmente la expresién (ZIZ3) se puede escribir como

€41 i1
F,, = (Kp +iwCy)(—ik;) i_zz ;z l B; ] — (Kp +iwCy)hu, (2.134)
€_i4 Eia
N—_————

€

2.7.3. Fuerza equivalente en la base

La base mévil que se ha considerado unida al elemento en el nodo 1 sufre un
desplazamiento v% y un giro #% conocidos y producidos por el campo incidente,
(figura ZI3). La unién con dicha base se ha modelado mediante impedancias, una
(KS + ing) que se opone al movimiento horizontal, una (K} + iwC%) que se opone
al giro y la impedancia cruzada (K 59 + iwCSG). El efecto del movimiento en el nodo
de unién junto con las impedancias produce en el mismo la aparicién de una fuerza
y un momento

Fy =(K] +iwC)(v] — v1) + (K} + iwChy) (67 — 61) (2.135)
My =(KDy + iwChy) (v — v1) + (K§ + iwCy)(65 — 61) (2.136)
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Escribiéndolo de forma matricial

F (Kb +iwC?) (Kb, +iwC%) 0 0 vy — vy
M, | | (Kb, +iwCh,)  (Kj+iwCh) 0 0 0 — 6, (2.137)
Ey 0 0 0 0 0 '
M, 0 0 0 0 0
Kb

2.7.4. Ecuacién de movimiento para el elemento

Recordemos que la ecuacion matricial que define el comportamiento dinamico de
un elemento es, en el dominio de la frecuencia

(K —w*M)u, =F (2.138)

El vector F de fuerzas nodales equivalentes producidas tanto por cargas y mo-
mento repartidos, considerando también el elemento unido en el nodo 1 con una
base moévil se obtiene mediante la siguiente espresion

Fy €_i1 €41
M . €_; €; A .
F; = (K, + iwCy) e_;, e;, lBj ] — (K, +iwCy)qu.+
M, €_i3 €3
| —
[e]
i1 €1
(Ko + iwCy) (—ik;) | 2 2 | | A | Z (K, + iwCy)hu+
€3 Ei3 Bj
E_i4 Ei4
~—_—
[¢]
(K)+iwCl) (Kb +iwCly) 00 v —
(K}, +iwCy,)  (K§+iwCy) 0 0 0 — 6, 9139
0 0 0 0 ( ' )
0 0 0 0 0

Kb
Si pasamos al primer miembro de ZI3J) los términos de F que estan multi-
plicados por el vector u, incognita, la ecuaciéon que determina el comportamiento
dindmico queda -
(K- w’M)u, =F (2.140)
siendo
K = K + (K, +iwC,)q + (K + iwCy)h + K°

A; bb (2.141)
B, ] + K'u;

F = |(K, +iwC,)e — ik;(Kq +iwC’9)s] l
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T
donde u) = | v% 0% 0 0}

2.7.5. Montaje del sistema de ecuaciones

El modelo mostrado es extrapolable a una discretizacion con n elementos. La
matriz de masa y rigidez globales de una estructura discretizada con un ntimero n
de elementos saldra del montaje de las n matrices elementales, las cuales se pueden
considerar como submatrices de la matriz global, que se superponen en los grados
de libertad de los nodos que son comunes a varios elementos. Se muestra grafica-
mente la manera de montar las matrices globales del sistema de ecuaciones en la
figura ZTH. Cada submatriz esta representada por un cuadrado donde los puntos
son sus elementos y la letra j indica el nimero del elemento.

N — Submatriz de rigidez o
J masa de un elemento j

Matriz global de masa o rigidez

Figura 2.15: Esquema para montar las matrices globales del sistema

2.8. Validacion del cédigo

El modelo numérico expuesto ha sido implementado en un software de céalculo
matricial escrito en FORTRAN. Con el fin de dar validez a dicho software se resuelve
un problema sencillo para el cual se obtiene la solucién analitica y se compara con la
solucion numérica que se obtiene haciendo uso del software, considerando las mismas
hipétesis de partida.

Se supone una estructura esbelta embebida en un semiespacio, la cual se consi-
dera como una viga Euler-Bernoulli (ver figura ZT0). Esta ultima consideracion no
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influye en la validacion ya que la matriz de rigidez es la misma pero siendo el valor

de ¢ nulo.

Figura 2.16: Estructura esbelta embebida en un semiespacio

2.8.1. Solucién de la ecuacién analitica de una viga
Euler-Bernoulli sometida a ondas SH de
incidencia vertical y con un modelo Winkler
para el suelo

Considerando las fuerzas de inercia, asi como las fuerzas producidas por la exis-
tencia de un campo de ondas incidentes v; actuando sobre los resortes y amor-
tiguadores K, como fuerzas externas actuando sobre la seccién, y escribiendo la
ecuaciéon de equilibrio dindmico para una porcion diferencial de viga, obtenemos

v

rlrgsa

— pAw?v = K(v; — v) (2.142)

donde K = k, + iwc,, v = v(w, z) y el campo incidente para ondas de tipo SH
propagandose en direccion vertical en un semiespacio tiene la siguiente expresion:

_ 1 —ik(z—z¢) ik(z—z¢)
vr = (e te ) (2.143)

donde k es el nimero de onda y z; es la cota de la superficie libre. Reordenando
ETI22) de modo que el término del lado derecho sea conocido
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v

Eplp@ + (K — pAw?®)v = Kv; (2.144)

La solucién de esta ecuacion sera del tipo v = vy, + v,, donde vy, representa la

solucion de la ecuacién homogénea, y v, es cualquier solucién particular que verifique
la ecuacion.

Obtencién de la solucién homogénea

La solucion homogénea es aquella que verifica la siguiente ecuacion:

M 5
Eplp@ + (K = pAw)v =0 (2.145)
que puede ser escrita como
64
a—;j + A =0 (2.146)
donde
K — pAw?
M=""T""" (2.147)
Epl,

cuya solucion es del tipo e**, de tal modo que, ensayando dicha solucién, podemos
escribir la siguiente ecuacion caracteristica:

at At =0 (2.148)
de donde
K — pAw?
4= T 2.14
« L ( 9)

que tiene cuatro soluciones complejas que pueden escribirse como

a; = VM O/ G=1/2) ; j=1,2,34 (2.150)

donde M y 6 son el médulo y la fase del ntimero complejo a*. De este modo, podemos
escribir:

up, = D1 + Dye®?* + D3e®* + Dyje™” (2.151)
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Obtencién de la solucién particular

Sustituyendo (2I43) en (.144) obtenemos

o 1, |
Eplpa—;j + (K = pAw?)o = K3 (G0 4 eihl—a0) (2.152)

de donde podemos escribir
v
0z4

siendo A; = 0.5Ke** y AB; = 0.5Ke~**. La solucién particular de esta ecuacién
es del tipo

E,I, + (K — pAw®)v = Aje™** 4+ Bre* (2.153)

u, = Dse” "% 4 Dge'™* (2.154)
Sustituyendo en (ZI53)) y reordenando

(K'EpI, + K — pAw?) (Dse ™ 4 Dge™™) = Are™** 4 Breit (2.155)
de donde
A B
Ds ! Ds ! (2.156)

h KAE, L, + K — pAw? ; h KAE, L, + K — pAw?

Condiciones de contorno y obtencién de la soluciéon

Como se dijo anteriormente, la solucién de la ecuaciéon [I44) es del tipo v =
vy, + v,. De este modo, ya podemos escribir

v = D€ + Doe®* 4 D3e® + Dye™* + Dse” ™ + Dge'™ (2.157)

de donde D; a D, son incognitas. Para obtener el valor de estas incégnitas debemos
establecer las condiciones de contorno del problema. Para este ejemplo, considerare-
mos que los extremos de la estructura estan libres, de tal modo que podemos asumir
cortante y momento nulos en ambos. Lo cual implica

82

Momento nulo = 8—220 en z2=0y z=2z (2.158)
z
v

Cortantenulo = WZO en z2=0 y 2=z (2.159)
z

Con el fin de ser capaces de imponer estas condiciones de contorno, debemos
obtener primero las expresiones de las derivadas segunda y tercera de la deflexion
como sigue
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v : 4

8_ = alDle‘“Z -+ 042D2€a2z —+ Oé3D3€a3z -+ OZ4D4€Q4Z —+ ik (—D5€72k'2 —+ D6€Zkz)
z

aQU 2 aiz 2 agz 2 azz 2 gz 2 —ikz ikz

92 = a7 D€ + a5D2e™* 4+ a5 D3e™* + oy Dye™” — k (D5e + Dge )
z

83,0 3 aiz 3 azz 3 asz 3 Qyz 1.3 —ikz ikz

5 = ayD1e™* + oy Dee™* 4 a5 D3e™* + oy Dye™* + ik <D5e — Dge )
y4

Aplicando condiciones de contorno obtenemos las siguientes ecuaciones:

0*v
o @(2 = 0) =0 :
D1a? + Dy + D3a? + Dya? = k*(Ds + Dy) (2.160a)
0*v
° @(2 = Zt) =0 :
a%Dlealzt + (X%DQGQQ% + &§D3€O{32t + aiD4ea4zt — k2 (D567ikzt + D6€ikzt)
(2.160D)
v
o @(2 = 0) =0 :
D102 + Doad + D3aid + Dyalt = ik(—Ds + Dy) (2.160¢)
v
° @(2 = Zt) =0 :
&?Dlealzt + ()éngeaQZt + a§D3ea32t + OéiD4€a4zt — k3 (_D567ikzt + D6€ikzt)
(2.160d)

que constituyen un sistema de cuatro ecuaciones con cuatro incognitas (Dy a D)
que puede ser escrito como

ol al ol a? D,

a2€a1 Zt a2€agzt ageo‘?’zt Oé2€oz4zt D2
3 3 3 3 =

a3 eal 2t a%eag 2t a3 eag 2t ai 6a4 2t D4

k*(Ds + D)
2 (D5€—ik2t + D6€ikzt
ik3(—Ds + D)
Z'kS (_D5€—ikzt + D6€ikzt)

(2.161)

2.8.2. Comparacion de resultados

En la figura B2T1 se presenta, en términos de las funciones de transferencia, la
comparacion de las soluciones analitica y numérica, a diferentes profundidades de la
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estructura. Las funciones de transferencia [, relacionan el desplazamiento horizontal
de los puntos de estudio con el desplazamiento horizontal de campo libre en la
superficie libre.

Cota z/L=-4/5 Cota z/L=-1
1.4 . — - . 1.4 -
solucién analitica : :
12 - solucién numérica 7 12 oo
1 ‘ ‘ 1
0.8 -\\ -
_: _: i
02 F | solucion analitica ,_
) I solulcién numérica
0
0 0.2 0.4 0.6 0.8 1
a, 4
Cota z/L=-2/5 cota z/L=-3/5
14 T T , T PR 14 T T o, T R
12 L solucion analitica | 12| solucion analitica |
: solucién numérica : soluciéon numérica
1 i i l o i i _

1
Cota z/L=0 Cota z/L=-1/5
14 T T T | 14 T II -, T |'t
L ‘ : solucién analitica
12 - N 12 r solucién numérica 7
14 . 1H : : .
0.8 - - 0.8 - -
_3 _3
0.6 - = 0.6 =
04 - ; 3 3 o 04 -
02 L solucion analitica T 02 b i
’ solucion numérica ’
O | | | | 0
0 0.2 0.4 0.6 0.8 1 0 1
a0 a0

Figura 2.17: Comparacién de la solucién analitica y la solucién numérica

Se observa claramente como ambas soluciones coinciden para las cotas escogidas,
prueba mas que suficiente para afirmar que el software es valido.
Los datos del problema que se resuelve cumplen las siguientes caracteristicas:
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E,/Es = 1000; L/d = 20; p,/ps =1.35; vs, =0.3; v, =0.2; £ =0.05 y &, =0.05,
siendo E, y I, los médulos de elasticidad, v, y v los coeficientes de Poisson, p, y
ps las densidades y &, y &, los coeficientes de amortiguamiento.






Capitulo 3

Modelos de interaccion
suelo-estructura

3.1. Introduccion

En este capitulo se exponen algunos modelos ideales de vigas sobre suelos o
medios elasticos que son interesantes para la formulacién de un modelo tipo Win-
kler. El principal problema que plantea la formulacién radica precisamente en la
modelizacion del fendémeno de interaccion suelo-estructura. El uso de los valores
adecuados para las impedancias que sustituyen al terreno es importante y en donde
se centra este capitulo. Estos modelos de suelo son un punto de partida para la
correcta eleccion de dichas impedancias.

El modelo Winkler clasico de un parametro se basa en la hipdtesis de que la
interaccion entre el suelo y la estructura se puede modelar a través de resortes dis-
tribuidos continuamente a lo largo del tramo de estructura en contacto con el terreno.
Dichos resortes son independientes entre si, de manera que los desplazamientos de
una region cargada son constantes al margen de que la estructura sea infinitamente
flexible o infinitamente rigida.

Las carencias del modelo Winkler han provocado el desarrollo de modelos de
suelo de dos parametros definidos por dos constantes elasticas independientes. Dicho
desarrollo se ha abordado desde dos filosofias distintas. Una de ellas es una extension
del modelo Winkler en donde la interacciéon mutua entre los resortes se representa a
través de un elemento elastico a cortante o cizalladura pura. Modelos que siguen esta
vertiente son por ejemplo los propuestos por Filonenko-Borodich en 1940, Hetenyi
en 1946, Pasternak en 1954 y Kerr en 1964. Por otro lado estan los que representan
una segunda manera de abordar el desarrollo de estos modelos de dos parametros.
Son por ejemplo los modelos de Reissner en 1958 y Vlasov-Leontiev en 1966. Estos
parten de las ecuaciones de la Teoria de la Elasticidad e introducen simplificaciones
en las suposiciones y en las restricciones con respecto a la distribucion de esfuerzos,
deformaciones unitarias y desplazamientos.
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3.2. Modelo Winkler

Winkler propone que el desplazamiento transversal v en cualquier punto del suelo
que actiia como soporte es directamente proporcional a la presién ¢ aplicada en dicho
punto y ademaés independiente de los demas puntos adyacentes al mismo, es decir

q(z) = Kv(x) (3.1)

siendo K el coeficiente de balasto del terreno. Segin este modelo el comportamiento
de cualquier punto del terreno es completamente independiente de los demas puntos
del mismo. Imaginemos una viga apoyada sobre el terreno con una carga distribuida
constante en toda su longitud, los desplazamientos del terreno en contacto con la
viga serian constantes e independientes de que la viga sea flexible o infinitamente
rigida, ver figura Bl

FoE EeE
(b)

(a)

Figura 3.1: (a).- Placa flexible sometida a una carga uniforme. (b).- Placa rigida sometida a una
carga concentrada

Este modelo es incapaz de contemplar las deformaciones fuera del area cargada
y por tanto no es recomendable su aplicacién cuando el terreno tiene cohesion o
capacidad a cortante.

3.3. Modelo de Pasternak

Elemento de
cortante puro

L i tiis

Figura 3.2: Esquema del modelo de Pasternak
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Pasternak contempla la interaccion entre resortes adyacentes conectando estos a
través de un elemento a cortante puro, ver figura B2 Este elemento introduce una
interaccion de cortante entre los elementos de resorte. Las tensiones tangenciales a
lo largo de la seccion del elemento de cortante son

dv(x)
dx

Tyz = (3.2)
siendo g el coeficiente de rigidez transversal del elemento de cortante puro. La
ecuacion de equilibrio en el tramo de contacto de la viga con el elemento de cortante
es

o) = K ofa) — p 10

en la que K sigue siendo el coeficiente de balasto del terreno que se utiliza en el
modelo Winkler de un parametro.

(3.3)

3.4. Modelo de Vlasov-Leontiev

Viga q(x)

~ QEETIEITE. oo
F ¢L 1 L

Base rigida

Figura 3.3: Modelo de Vlasov-Leontiev

Se trata un modelo de dos parametros que parte de la teoria de la elasticidad y
aplica el calculo variacional. Para su desarrollo se realizaron una serie de simplifica-
ciones que permiten la resolucion analitica del problema. Ademaés se consideré una
distribucién de desplazamientos ¢(z) en el medio elastico semi-infinito el cual tiene
un moédulo de elasticidad Eg y un médulo de Poisson vg. A dicha funcién ¢(z) se le
exigia cumplir unas condiciones en los extremos de tal manera que debia tener valor
unitario en la superficie y valor nulo a la profundidad H o en el infinito en caso de
tratarse de un semi-espacio, figura

o(z)=1 para  z=0 (3.4a)

o(2)=0 para z=H (3.4b)
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El modulo de elasticidad y el momento de inercia de la seccion transversal de la
viga son FEj, y I, respectivamente y b es el ancho de la misma. Para el caso de un
problema de deformacion plana, la energia de deformacién esta dada por

co H

2
1
/Eblb< T2 ) dx + 3 / /b(amex+azez + TorYVez) dzdx
B (3.5)

- /q(:c)z?(:c) dx

siendo 0, 0., Ty, €2, €2, V- las tensiones y deformaciones en el medio elastico y v(z)
el desplazamiento transversal en la viga. Haciendo uso de la ley de comportamiento
y compatibilidad en elasticidad, las tensiones en cualquier punto del medio son

o, B 1 = 0 ou/0x
o e =2) | T a2 | | Ou/0z + 0v/ox

Se considera que el desplazamiento v(z, z) en cualquier punto del medio semi-
infinito se puede escribir como

vz, z) = v(x)¢(2) (3.7)

Se supone el desplazamiento u(x, z) despreciable en comparacion con v(z,z) y
la tensién o, no es tenida en cuenta. Con estas consideraciones y sustituyendo las

ecuaciones (BH) v B1) en ([BH)
L oo H
1 d*v(x 1
— - [Er —//b
" Q/Tbb<d ) v
0 —o0 0
L

1 )<d3$j>2¢@01 dzdr — [ g(a)o(a) do

+2(1+1/8 /

(1+ vg)(1 — 2w dz

1—%) e (49(2) 2
>()<

(3.8)

El uso del caculo variacional aplicado a la ecuacion (BF) llevo a Vlasov y Leontiev
a un modelo de dos parametros, por lo que obtuvieron una ecuacién parecida a la
de Pasternak

o) = Kol) — 1, 0 3.9)

en la que K y K, se expresan como

H
1+% !¢ (3.10)

H 2
K, = Ebl_ys {/ (3.11)
(1+ vg)(1 — 2uy)

0
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El coeficiente K, es una medida de la capacidad de deformacién a compresion
del suelo y K; de la transmisibilidad de la fuerza aplicada en los elementos de
suelo vecinos, o dicho de otra forma, la capacidad del terreno para transmitir la
carga alrededor del suelo que rodea la viga. Se observa que este modelo presenta
un criterio de como los coeficientes estan relacionados con las propiedades elasticas
del suelo. La funcién ¢(z) debe ser escogida de manera que cumpla las condiciones
B4a) y (B4L). Vlasov y Leontiev adoptaron la siguiente

sinh 1—- =
$(z) = [;EM i) (3.12)

siendo

2 }O dﬁ(;) i dx
(l) _ 1= OOOO( ) (3.13)
H 2(1 — I/S) ;[ {J(x)Q dx

Por tanto ¢(z) depende de 7, indicador que define la reduccién del desplaza-
miento vertical del medio con la profundidad y que depende de las caracteristicas
de la viga y del terreno. Se observa que para valores de 7 entre 0 y 1 la funcién ¢(z)
varia de manera lineal, para valores mayores o iguales a 2 la variacion es de tipo
exponencial [25].

3.5. Modelo de deformacién plana

Los modelos anteriores son aplicables a problemas estaticos. Se expone a con-
tinuaciéon un modelo dindmico para el analisis de la respuesta de una estructura
cilindrica enterrada [I5]. El terreno se considera como una divisién de finas capas
horizontales en donde cada una de ellas estd sujeta a un problema dinamico de
deformacion plana. Esto es equivalente a sustituir el suelo por una distribucién con-
tinua de resortes y amortiguades en la que los resortes representan la rigidez y los
amortiguadores el amortiguamiento debido a la disipacion histerética de energia. De
esta representacion surgen los llamados modelos dinamicos tipo Winkler para vigas
enterradas (BDWF - Beams on Dynamics Winkler Foundation).

Supongamos una viga de seccién cilindrica de didmetro D embebida en un estra-
to, apoyada en una base rigida y sometida a una carga dinamica ¢(t) en la cabeza,
ver figura B4l La viga es un sélido elastico con médulo de elasticidad E, y radio R.
Se considera el medio en el que se encuentra enterrada como homogéneo e isétropo
de profundidad L, médulo de elasticidad F,, moédulo de Poisson v, densidad ps y
amortiguamiento histerético [;.

En el caso de un problema de deformacién plana, las ecuaciones de equilibrio, en
coordenadas cilindricas, de un medio que oscila harménicamente son [I3]
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Figura 3.4: Diagrama para la definicién del problema

01|00 ov 1010 ou o\ 2
20 11 O vl 1010 _du w _
Tort [87“ (ru) + 80] r200 | Or (rv) 00 | - <c’s‘> u=0 (3.142)
L0 [0 o] oLTo o] (0)
a0 |or" T og) Tarr o™ " a) T\e) U0 (3.14b)
10 [ Ow w)?
ror <a—> i <—> w= (3.14c)

Las ecuaciones ([B.I4al) y (BI4H) representan el equilibrio frente a oscilaciones
laterales, mientras que la ecuacién ([BI4d) el equilibrio en la direccién del eje vertical.
w es la frecuencia de vibraciéon y ¢ la velocidad de propagacion de la onda de cortante

cuya expresion compleja es
cr = cs\/1 4+ 2if; (3.15)

n representa la relacion entre la velocidad de propagacion ¢, de la onda volumétrica
y la velocidad de propagacion ¢, de la onda de cortante.

p 2(1 — )
e JA TV 3.16
=, 1— 20, (3.16)

Si nos centramos en el problema con una carga dindmica horizontal en la cabeza,
la expresion de la impedancia propuesta por Novak [[3] es

k, = mpsa’T (3.17)
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siendo s el médulo de rigidez transversal y

_ AR () Ko (ag) + ag K (by) Ko(ag) + b3 Ko (by) Ky (ap)
by Ko (05) K1 (a5) + ag Ky (05) Ko(ag) + 0505 Ko () Ko (5)

o

T = (3.18)

K,y K; son funciones modificadas de Bessel de segundo tipo de argumento complejo

ol ol
= ;b= 3.19
° T+ 2B, C V14260 (319

donde a, es la frecuencia adimensional

wR

Cs

Ay, =

(3.20)

Sabiendo que la forma compleja del modulo de elasticidad transversal es

: = py(1+ 2i6,) (3.21)
y teniendo en cuenta la expresion de a* en (BIJ), la expresion ([B.ID) se convierte en
kp = —mpt(a)®T (3.22)

Separando la parte real e imaginaria de 7', la ecuacién (B2Z2) se reescribe como

kn = ps0n(1 4 2i55) (3.23)

siendo 0y, y B coeficientes reales dependientes de la frecuencia que representan la
rigidez y el amortiguamiento, respectivamente.

En la figura se muestra la representacién grafica ¢, y [, para el modo ho-
rizontal, ecuacién ([BZ3)), para diferentes valores de ;. Observando las graficas se
pueden apreciar ciertas limitaciones que introduce este modelo [T2].

En el rango de bajas frecuencias la rigidez cae rapidamente hasta el extremo que
se hace nula para a, = 0. Por ello el modelo es incapaz de predecir la frecuencia
estatica.

En estratos sobre base rigida aparece una frecuencia caracteristica conocida como
frecuencia de corte. La frecuencia de corte esta asociada con la frecuencia natural del
estrato y muestra un incremento stubito del amortiguamiento. A la luz de la graficas
se observa que el modelo es incapaz de capturar el efecto de la frecuencia de corte.

La impedancia compleja dada por la ecuacion ([B2ZF) es independiente de la
relacién de rigideces entre el suelo y la estructura E,/E; y de la esbeltez L/D,
siendo D el diametro.

También hay que decir que este modelo es sensible al valor del médulo de Poisson
vs. Observando la expresion ([BI0) se puede ver que existe una sigularidad si v = 0.5.
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3,

Figura 3.5: Valores del pardmetro de rigidez §;, y del pardmetro de amortiguamiento 35, de la
impedancia en el modo de vibraciéon horizontal para s = 0.05y s = 0.

3.6. Desarrollo de un modelo mejorado

Los defectos del modelo de deformaciéon plana estan relacionados con la falta de
continuidad del medio en la direccion vertical, ya que el modelo de Novak supone el
medio infinito y homogéneo, consideracion que se rompe por la existencia de una base
rigida. A parte de esto Novak considera la estructura rigida, sin masa e infinitamente
larga por lo que el modelo no tiene la capacidad de considerar la profundidad del
terreno sobre la base rigida.

La falta de continuidad impide al modelo determinar de que manera las fuerzas
se transfieren verticalmente, lo que produce que a bajas frecuencias la rigidez sea
practicamente nula. Por otro lado, la imposibilidad de contemplar la profundidad
del terreno no permite incorporar la frecuencia de corte, o lo que es lo mismo, la
frecuencia de corte es nula.

La mejora de este modelo de deformacion plana considera que cada capa hori-
zontal del terreno se encuentra sometida en sus caras inferior y superior a tensiones,
tangenciales en el caso de vibracion lateral y normales en caso de vibraciéon vertical,
ver figura La variacion de estas tensiones con la profundidad dota al modelo
con la capacidad de contemplar como el medio transfiere fuerzas verticalmente.

Para que el modelo sea capaz de contemplar estas tensiones es necesario reescribir
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Capas de terreno
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Figura 3.6: Modelo de las capas del terreno. Arriba la transferencia de tensiones en vibraciones
laterales y abajo en vibraciones verticales.

el grupo de ecuaciones (B.I4) de la siguiente forma

o010 v 100 ol Pu  [(w)’
2—— — _— | - —— | — _ —_— — g
mwrbﬁw+%] (rv) %—Z+<>u 0 (3.24a)

7200 | Or a0 |  0z* ct
,1 o0 owl o010 ou]l v [w)’
v Oy du| oY _ 24b
Thy3 5 [8'/’( Hae] arr ar(m) 89_+8z2+< ) v=0 " (3.24b)
10 ([ ow 2w (w)’
XARTRLIE (240

Nu ¥ Mw son coeficientes adimensionales que sélo dependen del médulo de Poisson v

B 2 — v, . B 2
M = 11—, ’ Mo = 11—,

La presencia de los nuevos términos en el conjunto de ecuaciones (B24]) con
respecto a ([B.I4) hace que la formulacién tenga un cierto caracter tridimensional. Se
observa, como mismo ocurre en el modelo de deformacion plana, que las vibraciones
en la direccion horizontal y vertical estan desacopladas.

3.6.1. Aproximacion de Vlasov-Leontiev

Una aproximacién posible para reducir a dos dimensiones el problema tridimen-
sional que se trata, es integrar a lo largo de la profundidad del estrato las ecuaciones
de gobierno. Se demostrara que esta propuesta no provoca la aparicion de las limita-
ciones del modelo de deformacion plana y da como resultado una respuesta dinamica
satisfactoria. La solucién elegida se basa en la aproximacion de Vlasov-Leontiev, en
la que se asume que el campo de desplazamientos en el estrato se puede descomponer
en una funcién dependiente sélo de las coordenadas horizontales r y # y una funcion
adimensional que depende de la coordenada vertical z, esto es
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u(r,0,z) = u(r,0)x(z) (3.25a)
v(r,0,z) =v(r,0)x(z) (3.25b)
w(r,8,z) =w(r,0)x(z) (3.25¢)
Recordar que la funcién y(z) debe cumplir
x(z)=1 para  z=0 (3.26a)
X(z)=0 para  z=1 (3.26b)

Introduciendo el grupo de expresiones (B2H) en las ecuaciones (B24]) queda

,O1[0, o 1ofa,  aua|l | _dx -
nuarr [ar( ) %‘| _T_Qﬁ -E(T‘U)_%-X‘I“UdZQ‘F( 8) UX—O (327&)
L1080, ov] at[a, . du]l | dx -
M55 [a—(m) 89] G _5(”’) “ o8| T ( ) ox =0 (3.27b)
10 [ ow , _d*x w)? B
ror (7’§> XMW (g) wx =0 (3.27¢)
Reordenando las ecuaciones (B217) podemos escribir
d2
Hx+ud>2< ~0 (3.282)
A —d2X
Gx + i 0 (3.28b)
” 7d2X
Fx + niw@ =0 (3.28¢)
siendo
N 1[0 ol 1070 oul  (w
_204tyo o ovl Lojo, . 0ou w -
= oy [8r(ru) i 80] r200 | Or (ro) a0 | * (c;) " (3.292)
L0 [0 a) a1fo ] (e
“=mzgg (o™ ) Tarr o o e )" (3.29b)
.10 ow w\ _

Multiplicando las ecuaciones (B2Z¥) por x e integrando en la profundidad del
estrato tenemos
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L L

A d?

H/X2dz+a/—>§xdz:0 (3.30a)

0 0

L L i

G/X2d2+6/ﬁxdz:0 (3.30b)

0 0

L L 2y
F/X2 dz + niw/ TaX dz=10 (3.30c)
0 0 4*
Las tres ecuaciones anteriores las podemos escribir como
H—bu=0 (3.31a)
G- =0 (3.31b)
F—n2b2w=0 (3.31c¢)
siendo
L 2
J %X dz
2 o7
b= ——F—— (3.32)
I x?dz
0

Segun el caso, b =

b, en problemas de vibraciéon horizontal habiendo escogido

= Xw<z>-

(3.33)

X(z) = xu(2). En problemas de vibracion vertical b = b,, siendo x(z)
Integrando por partes el numerador de (B32), y teniendo en cuenta (B2ZH) se
llega a
L
dx
e
f x?dz
0

El grupo de ecuaciones (B21), teniendo en cuenta [B32) y [B33), se puede es-

cribir como

01 8(,> @_ig_g<7)_@_+ 22
Tger o o0 a0 [or" " " o0 T |\

,10 0 ou]l  [[w)’
g 5 e -5+ (3

lg @ + g 2_ 2[)2 v =20

ror \ or ct ThoPw | 0=

—0  (3.34a)
—0  (3.34D)
(3.34¢)
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El valor de b, y b, se obtiene a partir de la expresién (B33)) eligiendo de manera
adecuada la funcién x,(z) para el modo horizontal y y,(z) para el modo vertical,
respectivamente.

Como se dijo en la seccion B4l la técnica empleada por Vlasov y Leontiev con-
ducia a un modelo de dos parametros como es por ejemplo el modelo de Pasternak.
Viendo la figura B4l se puede observar que en este caso la integracion se realiza en
direccion paralela a la superficie entre el terreno y la viga. Este cambio con respecto
a la figura nos lleva a un modelo de un pardmetro analogo al de Novak.

Si comparamos las ecuaciones (B34) con las del modelo de deformacién plana
BI4) se puede observar la analogia. Teniendo en cuenta las expresiones (BIJ) y
B20) se puede definir una nueva frecuencia adimensional segun el problema a re-
solver

a2 1/2
(ag)u = [(buR)2 ~ 15 %8 5 ] (3.35)
para el problema horizontal, y
a2 1/2
(ag)w = l(nwwa)2 ~ 15 %8 5 5 ] (3.36)

para el problema vertical.

A partir de esto, las expresiones para obtener las impedancias, segin el modo de
vibracién, son formalmente idénticas a las propuestas por Novak [13].

Llegados a este punto, el siguiente paso es escoger adecuadamente la funcién
X(z). Para el problema de vibracién horizontal se puede emplear una funcién de

forma sinuosoidal [12]
Tz

Xu(2) = cos (i) (3.37)

para la que se cumple ([B20), ver figura B

Figura 3.7: x(z) igual a una funcién sinuosoidal.

Con la expresion (B23) obtenemos el valor de b2
2 L
(%) Ofsen2 (%) dz

Ofcos2 (%) dz

_ (%)2 (3.38)
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Por tanto el producto b, R queda

T 7 L\t
bR = -R=" (5) (3.39)

Otra posible funcién y(z) puede ser el primer polinomio de Hermite, ver figuraBS

X(2) =3 (1 - %)2 —2 (1 - %)3 (3.40)

Figura 3.8: Funcién x(z) igual al primer polinomio de Hermite

Si calculamos para ([B40) el valor de b, segin la expresion ([B33), el producto

b, R queda
1 [42 fLN7!

Usando como funcion y(z) las expresiones B31) y [B.40), la esbeltez L/D de la
estructura es tenida en cuenta en la expresion de la impedancia horizontal (B22) a
través del valor de (a}) dado por (B3H). En la figura B se muestra la representacion
de la rigigez ¢, y el amortiguamiento (3, segin la expresion B2Z3 Se puede observar
que para el modelo mejorado la rigidez a frecuencias bajas no se hace nula, como
si ocurre con el modelo de deformacion plana, y se puede apreciar como se capta el
fenomeno de la frecuencia de corte y el incremento repentino del amortiguamiento
a partir de esta. Si nos fijamos en la curva roja del modelo de Novak, se puede ver
que la modificacion de la esbeltez no produce ninguna variaciéon ya que este modelo
no contempla la relacion entre la longitud y el ancho de la estrucutra. Sin embargo
vemos como las curvas del modelo mejorado difieren a medida que cambia el valor
de L/D. Cuando dicha relacién crece el modelo mejorado se parece més al modelo
de deformaciéon plana, el cual considera como hipotesis la longitud infinita de la
estructura.

En las expresiones de x(z) anteriores no se contempla la relacion de rigideces
E,/E entre la estructura y el terreno. Para considerar dicha relacién de rigideces
se expone la siguiente funcién x(z), obtenida a partir de la teoria de Winkler clasica
para el problema estatico

Xu(z) = € (Cy cos pz + Cysen pz) + e #* (Cy cos pz + Cy sen pz) (3.42)
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Figura 3.9: Comparativa de la parte real e imaginaria de la impedancia entre el modelo de
deformacion plana (Novak) y el modelo mejorado utilizando dos posibles expresiones de la funcén
X(z) y diferentes relaciones de esbeltez L/D.
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siendo "
E
= s 3.43
=) 09
La ecuacién de gobierno del problema de Winkler clasico es
d*u
que podemos escribir
d*v  E,
il — .45
At E, [pu 0 (3.45)
Las soluciones de la ecuacién anterior son del tipo u = e¢®*. Llamando
E
M=-—= 3.46
Bl (3.46)
y sustituyendo el valor de la solucién tipo, la ecuaciéon [B4H) queda
ad=N=0 — a=)\ (3.47)
Se obtienen cuatro valores complejos de a del tipo
B\ o
ap = ( ) STk =1,2,3,4 (3.48)

Epl,

Para cada valor de k y operando se tiene

Teniendo en cuenta (B43))

ar = p(1+1)
ag = p(—=141
az = p(—1—1)
oy = p(l — i)
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Por tanto la soluciéon es
u = A1 + Aye®?* + Age™* + A e (3.49)
Sustituyendo cada valor de o y operando, teniendo en cuenta que

e"* = cos puz + 1sen uz

e "M* = cos uz — isen uz

finalmente se obtiene la solucion del campo de desplazamientos igual a la expresion
de x(z) B42).El valor de las constantes (Cy,Cy, C3, Cy) se obtiene aplicando las
condiciones que debe cumplir la funcién x,(z) y resolviendo luego el sistema de
ecuaciones que resulta

O, = Fopr (cos pL + e sen pL)
Cy = ! L ek (cos2ulL +sen2ul)
? Expr |sen uL sen pL
2
C3=1- Z (cospL + e*Fsen pl) = 1 — C,
xpr
L
Cy = Ll =1 apL _ COSHZ
* Expr [cos,u < e sen pL

+-e?1E l—Q cos puL + — (24 e*) sen uLH

sen p L

siendo

Expr = 3cos uL — 4e***(cos pL — sen pL) + e**¥(cos pL — sen L) + sen puL



Capitulo 4

Resultados

4.1. Introduccion

En este capitulo se pretende presentar valores de rigidez y amortiguamiento de
las impedancias del terreno obtenidos a través del modelo propuesto y compararlos
con los resultados de un codigo basado en un modelo tridimensional de Elementos
de Contorno. Para ello se ha abordado un mismo problema variando algunos datos
como la esbeltez de la estructura y la relacion de rigideces entre la estructura y el
terreno. El andlisis se ha realizado en el dominio de la frecuencia. El fin de dicha
comparativa es verificar que las expresiones propuestas para estimar los valores de
impedancia del terreno son aceptables para poder ser utilizados como impedancias
del modelo simple.

Se ha resuelto un problema tipo de una estructura enterrada en un terreno de un
unico estrato sobre base rigida. El andlisis se realiza en el dominio de la frecuencia.
Los resultados se exponen en graficas en las cuales el eje horizontal representa la
frecuencia adimensional a, y el eje vertical la parte real e imaginaria de la impedan-
cia, normalizada con el valor de la rigidez estatica que se obtiene con el modelo
tridimensional de Elementos de Contorno Re(Kp)% 5,

4.2. Rango de frecuencias

Como referencia se ha utilizado el espectro de respuesta normalizado que aparece
en el capitulo 5.7 de la norma AFPS 90. Con las funciones de transferencia obtenidas
para diferentes rangos de frecuencias al resolver un mismo problema se calcularon los
correspondientes espectros para cada rango compatibles con el de la norma AFPS90.
El mayor rango que se utiliz6 fue {0.0, 4.7}, dando espectros practicamente iguales
para un rango {0.0, 2.0}. Para rangos menores como {0.0, 1.0} se empezaron a
observar variaciones no despreciables por lo que se utilizé el rango de frecuencias
{0.0, 2.0}.
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4.3. Problema tipo

El problema tipo que se ha escogido para la obtencion de una bateria de re-
sultados que permita sacar conclusiones sobre los modelos de suelo propuestos se
muestra en la figura 21l Se trata de una estructura de longitud L y seccién circular
de didmetro D. El material se considera lineal, homogéneo e isétropo con modulo de
rigidez transversal ji,,, médulo de Poisson v, y densidad p,. Se encuentra embebida
en un estrato que a su vez esta sobre una base rigida. El estrato se considera un
medio lineal, homogéneo e isétropo con modulo de rigidez transversal s, modulo
de Poissonn v, densidad p, y velocidad de propagacion cg. Tanto la estructura co-
mo el estrato tienen el mismo coeficiente de amortiguamiento histerético & = 0.05.
En la parte superior de la estructura, al nivel de la superficie libre, se aplica un
desplazamiento u(t) = €' de amplitud unitaria y frecuencia w.

u=e Superficie libre
—_—
i l T
z
L
D
Hp, Vp, Pp Hs:Vs)Ps
A J

\ Base rigida

Figura 4.1: Esquema del problema tipo

Los valores de las propiedades del terreno son constantes

s = 5-10° (N/m?)
ps =2-10° (kg/m?)
cs = 500 (m/s)

vy, =0.3

En cuanto a la estructura, el valor del diametro D es de 30 metros y la longitud
toma diferentes valores {30,50,90,150,300} en metros, por lo que la relacién de
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esbeltez L/D varia

L
Caso 0 L=30 ; —=1.00
aso — D
Caso 1 L =50 L 1.67
— = o — = 1.
aso D
Caso 2 L =90 L 3.00
aso — = ;= =3.
" D
L
Caso3 — L=150 ; D= 5.00
L
Caso4 — L=300 ; D= 10.00

Los valores de las propiedades del la estructura son

pp = 2.6-10% (kg/m?)
v, =0.2

El médulo de rigidez transversal p, varia, de manera que para cada caso se calculan
las impedancias con las cinco relaciones p,/ s siguientes

1, =1-10" (N/m?) % — 20

1, =1-10" (N/m?) % = 200
p,=1-102 (N/m?) % — 2000
1, =1-10% (N/m?) % — 20000
=110 (N/m?) % = 200000

Por tanto hay un total de veinticinco problemas diferentes que agruparemos por
realaciones de esbeltez, es decir, por casos.

Cuando en la leyenda de las graficas aparece x(z) = Winkler se quiere decir que
la funcién y(z) que se ha utilizado es la expresion

Xu(2) = " (C1 cos pz + Cysen puz) + e #* (Cs cos pz + Cysen uz)

- E, 1/4
- \4E,1,

La longitud y el didmetro de la estructura es de 30 metros, por lo que la relacién
de esbeltez es L/D = 1. Los valores de las impedancias que se muestran estan

siendo

4.3.1. Caso0
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normalizados con la parte real de la rigidez estatica obtenida con el modelo de
Elementos de Contorno Re(Kj)%p,, por tanto se representa la parte real Re(Kj)
e imaginaria Im(K}) de las impedancias obtenidas con el modelo correspondiente
divididas entre Re(K})%pmp,-

En la figura se representa, para cada relacion de rigidez entre la estructura y
el suelo 1,/ s, la parte real e imaginaria de la impedancia normalizada obtenida con
los diferentes modelos. Para f,/11s = 20 el modelo de Novak para frecuencias entre
0 v 1 muestra valores de rigidez significativamente mas bajos debido a sus carencias.
Con el modelo mejorado utilizando como funcién x(z) cualquiera de las propuestas
anteriormente se consigue representar el efecto de la frecuencia de corte aunque la
frecuencia estatica es algo mas pequena que la del modelo de Elementos de Contorno
(BEM). Para valores de la inversa de L superiores a 2.5 aproximadamente tanto las
curvas de rigidez como de amortigumiento se vuelven practicamente horizontales. Al
aumentar la relacion p,/p, la estructura se rigidiza y por tanto es menos deformable,
por lo que la fuerza que hay que vencer (la impedancia) para que se produzca un
desplazamiento unitario en la parte alta es practicamente constante para cualquier
frecuencia.

4.3.2. Casol

Manteniendo el didmetro constante aumentamos la longitud de la estructura a
50 metros por lo que la esbeltez aumenta, L/D = 1.67. En la figura .3 se representa
de nuevo la parte real e imaginaria de la impedancia normalizada. Para valores de
la inversa de puL a partir de 2.7 aproximadamente las curvas de rigidez y amor-
tiguamiento se vuelven horizontales por el mismo motivo que en el caso anterior.
Para valores de la inversa de pL inferiores de nuevo el modelo de Novak muestra sus
carencias en cuanto al valor de la rigidez estatica y la frecuencia de corte. El modelo
mejorado utilizando como funcién x(z) cualquiera de las propuestas representa de
manera aceptable la frecuencia de corte y en cuanto a la rigidez estatica se aprecia
una mejora notable con respecto al modelo de Novak.

4.3.3. Caso2

Aumentando ahora la longitud de la estructura a 90 metros y menteniendo el
didmetro en 30 metros se representan las impedancias en la figura 24l En este caso
para valores de la inversa de pL a partir de 2.63 aproximadamente la rigidez y
el amortiguamiento se vuelven practicamente constantes y del mismo valor para
cualquier modelo, para valores inferiores se puede observar la misma tendencia que
en los casos anteriores.
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4.3.4. Caso3

Los resultados de las impedancias para una estructura de longitud 150 metros y
el mismo didmetro se muestran en la figura L3 En este caso el valor de la inversa de
pL a partir del cual las curvas se vuelven horizontales es 1.58 aproximandamente,
para valores inferiores se puede observar lo dicho en los casos anteriores aunque en
concreto para la relacion pu,/us = 20 vemos que usando como funcién x(z) la que
se obtiene de resolver el problema de Winkler la frecuencia de corte se desplaza y
sin embargo la rigidez estatica es muy parecida a la de elementos de contorno. Por
contra usando como funcién y(z) las otras dos propuestas vemos que la frecuencia de
corte se parece mucho a la de la curva roja pero sin embargo hay mayores diferencias
en la rigidez estatica.

4.3.5. Caso4

El altimo caso es el de la misma estructura con una longitud de 300 metros y el
mismo didmetro. En la figura L@ se muestran los valores de las impedancias para
este caso. Para valores de la inversa de pL a partir de 1.41 aproximadamente las
curvas de rigidez y amortiguamiento se vuelven planas. Para valores inferiores vemos
como de nuevo el modelo de Novak es incapaz de reproducir la frecuencia de corte
y la rigidez estatica. El modelo mejorado da resultados muy parecidos y bastante
cercanos al modelo de Elementos de Contorno para valores de p,/p, iguales a 2000
y 20000 independientemente de cual sea la funcién x(z). Para valores de 1,/ 115 de 20
y 200 al utilizar como funcién y(z) la obtenida del problema de Winkler se vuelve a
observar un valor de frecuencia de corte algo mayor pero buenos valores de la rigidez
estatica.
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Figura 4.5: Parte real e imaginaria de la impedancia K} para L/D = 5 y diferentes relaciones
de rigidez entre la estructura y el terreno.
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Figura 4.6: Parte real e imaginaria de la impedancia K, para L/D = 10 y diferentes relaciones

de rigidez entre la estructura y el terreno.



Capitulo 5

Revision, conclusiones y
desarrollos futuros

5.1. Revision

Este trabajo estd enmarcado en el ambito de la dinamica de estructuras, en
concreto, en el estudio de la respuesta dinamica de estructuras enterradas sometidas
a la accion de terremotos.

Se ha presentado un modelo simplificado para el estudio de estructuras enterradas
que tiene como principal ventaja su simplicidad frente a otros mas elaborados, que
necesitan de mas tiempo y recursos informaticos. De esta manera puede ser imple-
mentado con facilidad en cualquier lenguaje de programacion, dando la posibilidad
de ser ejecutado en un PC convencional de bajas prestaciones.

El modelo pretende representar el comportamiento real de la estructura huyendo,
a diferencia de otros modelos ingenieriles, de las simplificaciones desde el punto de
vista de la rigidez de la estructura.

Se presenta la formulacién matricial del problema de forma detallada de tal
manera que puede ser reproducida de manera sencilla por un lector familiarizado
con el calculo matricial de estructuras. La formulacién permite contemplar la ver-
dadera flexibilidad de la estructura, los fenémenos de interaccién suelo-estructura y
el caracter espacial de la excitacion.

Se ha hecho incapié en diferentes modelos para determinar lo parametros del sis-
tema, entiéndase la impedancia del mismo fundamentalmente, habiéndose recurrido
a la bibliografia existente para problemas similares.

Se han utilizado resultados obtenidos con un método directo mas riguroso para
testear los resultados arrojados por el modelo simplificado propuesto.

Con el fin de validar el c6digo FORTRAN en el que se ha implementado el modelo
propuesto, se han comparado resultados obtenidos a través del método numérico y a
partir de la solucién analitica del mismo modelo Winkler (sin necesidad de acudir a
un proceso de discretizacion de la estructura enterrada por elementos finitos u otras
metodologias similares, pero si considerando la interaccion con el terreno a través
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de una serie de resortes y amortiguadores). El problema elegido corresponde a un
pilote enterrado en un suelo homogéneo, verificindose las hipotesis de partida de
la teoria clasica de vigas o de Euler-Bernoulli. Los resultados muestran la validez
del codigo con el que se han obtenido el resto de los resultados mostrados en este
trabajo.

5.2. Conclusiones

A la luz de los resultados de las impedancias mostrados en el capitulo anterior
se puede decir que el modelo de suelo propuesto por Mylonakis con respecto al
de deformacion plana de Novak [I3] supone una clara mejora a la hora de obtener
valores de impedancias del terreno. Aun asi, habiendo tomado como referencia para
determinar la validez de los valores obtenidos, el modelo mejorado de Mylonakis
requiere una mayor atencién a la hora de escoger la funcién x(z) ya que en los casos
mostrados se han utilizado funciones obtenidas de problemas estaticos, las cuales no
contemplan la variacién de los desplazamientos con la frecuencia. Al mismo tiempo
no se conoce que sensibilidad tiene la funciéon de aproximacién y(z) en cuanto a
las caracteristicas del problema como la profundidad del estrato, el canto de la
estructura enterrada o las propiedades de la estructura y el terreno.

5.3. Desarrollos futuros

Uno de los objetivos de la formulacién del modelo es obtener la respuesta dinami-
ca de estructuras poco esbeltas. Una posible prueba futura seria probar como funcion
X(z) la solucién analitica de las ecuaciones de gobierno de una viga de cortante.

También se podria utilizar un proceso iterativo. Los pasos que se siguen para
obtener el valor de las impedancias, se basan en elegir primero la funcién x(z), luego
mediante integracion el valor de b,, para finalmente utilizar la expresién propuesta
por novak. Una vez obtenida las impedancias podria calcularse la deformada de la
estructura y hacer que dicha deformada pasara a ser la nueva funcién x(z). De esta
manera se podria seguir un proceso iterativo en el que la funcién y(z) de la siguiente
iteracion sea la deformada de la iteracién anterior.

En todos los planteamientes vistos hasta ahora b, es un nimero real debido a
que las funcién x(z) utilizada es obtenida de problemas estaticos, por lo que dicha
funcién no depende de la frecuencia. Podria ser interesante utilizar una funcion
X(z,a,) para obtener valores complejos de b,,.

Un método interesante para obtener los valores de las impedancias es mediante
algoritmos genéticos, calculando b, de manera que la diferencia entre la deformada
obtenida con el modelo y con Elementos de Contorno sea la funcién a minimizar.
O bien un codigo genético que calcule las impedancias a partir de las integrales de
tensiones obtenidas del modelos de Elementos de Contorno.
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